某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元~1 000萬元的投資收益,現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%,
(Ⅰ)若建立函數(shù)模型制定獎勵方案,試用數(shù)學(xué)語言表述公司對獎勵函數(shù)模型的基本要求;
(Ⅱ)現(xiàn)有兩個獎勵函數(shù)模型:(1)y=+2;(2)y=4lgx-3.試分析這兩個函數(shù)模型是否符合公司要求?
解:(Ⅰ)設(shè)獎勵函數(shù)模型為y=f(x),
則公司對函數(shù)模型的基本要求:當x∈[10,1 000]時,①f(x)是增函數(shù);②f(x)≤9恒成立;
恒成立;
(Ⅱ)(1)對于函數(shù)模型
當x∈[10,1 000]時,f(x)是增函數(shù),
則f(x)max=f(1000)=,所以f(x)≤9恒成立,
因為函數(shù)在[10,1000]上是減函數(shù),
所以,從而不恒成立,即不恒成立,
故該函數(shù)模型不符合公司要求;
(2)對于函數(shù)模型f(x)=4lgx-3:
當x∈[10,1 000]時,f(x)是增函數(shù),
則f(x)max=f(1000)=4lg1000-3=9,所以f(x)≤9恒成立.
設(shè),則g′(x)=,
當x≥10時,g′(x)=
所以g(x)在[10,1 000]上是減函數(shù),
從而g(x)≤g(10)=-1<0,
所以,即,
所以恒成立,故該函數(shù)模型符合公司要求。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元~1000萬元的投資收益.現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(Ⅰ)若建立函數(shù)模型制定獎勵方案,試用數(shù)學(xué)語言表述公司對獎勵函數(shù)模型的基本要求;
(Ⅱ)現(xiàn)有兩個獎勵函數(shù)模型:(1)y=
x150
+2
;(2)y=4lgx-3.試分析這兩個函數(shù)模型是否符合公司要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元到1000萬元的投資收益.現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)若建立函數(shù)y=f(x)模型制定獎勵方案,試用數(shù)學(xué)語言表述該公司對獎勵函數(shù)f(x)模型的基本要求,并分析函數(shù)y=
x
150
+2
是否符合公司要求的獎勵函數(shù)模型,并說明原因;
(2)若該公司采用模型函數(shù)y=
10x-3a
x+2
作為獎勵函數(shù)模型,試確定最小的正整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元到1000萬元的投資收益.現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(Ⅰ)請分析函數(shù)y=
x
150
+2是否符合公司要求的獎勵函數(shù)模型,并說明原因;
(Ⅱ)若該公司采用函數(shù)模型y=
10x-3a
x+2
作為獎勵函數(shù)模型,試確定最小的正整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南通市通州區(qū)高三重點熱點專項檢測數(shù)學(xué) 題型:解答題

.(本小題滿分14分)

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元~1000萬元的投資收 

益.現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單

位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.現(xiàn)

有兩個獎勵方案的函數(shù)模型:(1);(2).試問這兩個函數(shù)模

型是否符合該公司要求,并說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州蕭山三校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)卷 題型:解答題

(本小題14分)

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元~1000萬元的投資收益.現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.

(1)若建立函數(shù)模型制定獎勵方案,試用數(shù)學(xué)語言表述公司對獎勵函數(shù)模型的基本要求;

(2)現(xiàn)有兩個獎勵函數(shù)模型:(1)y=;(2)y=4lgx-3.試分析這兩個函數(shù)模型是否符合公司要求?

 

查看答案和解析>>

同步練習(xí)冊答案