集合A={y|y=
x2+3
x2+1
,x∈R}
B={x|y=
2-2x+1-
1
8
}
,則A∩(?RB)=( 。
分析:求出A中函數(shù)的值域,確定出A,求出B中函數(shù)的定義域確定出B,根據(jù)全集R求出B的補集,找出A與B補集的交集即可.
解答:解:由A中的函數(shù)變形得:y=
x2+1+2
x2+1
=1+
2
x2+1
≤3,即A={y|y≤3};
由B中的函數(shù)得:2-2x+1-
1
8
≥0,
即2-2x+1
1
8
=2-3,
變形得:-2x+1≥-3,
即x≤2,
∴B={x|x≤2},
∴?RB={x|x>2},
則A∩(?RB)={x|2<x≤3}.
故選C
點評:此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集為實數(shù)集R,集合A={x|y=
x-1
+
3-x
},B={x|log2x>1}.
(Ⅰ)分別求A∩B,(?RB)∪A;
(Ⅱ)已知集合C={x|1<x<a},若C⊆A,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是
②③⑤
②③⑤
.(只填正確說法序號)
①若集合A={y|y=x-1},B={y|y=x2-1},則A∩B={(0,-1),(1,0)};
②函數(shù)y=f(x)的圖象與x=a(a∈R)的交點個數(shù)只能為0或1;
f(x)=lg(x+
x2+1
)
是定義在R上的奇函數(shù);
④若函數(shù)f(x)在(-∞,0],(0,+∞)都是單調(diào)增函數(shù),則f(x)在(-∞,+∞)上也是增函數(shù);
⑤定義max(a,b)=
a,(a≥b)
b,(a<b)
,則f(x)=max(x+1,4-2x)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={y|y=x+1,x∈R},B={y|y=2x,x∈R},則A∩B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={y|y=(
1
2
)
x
,x>1},B={y|y=log2x,x>1}
,則A∩B等于(  )

查看答案和解析>>

同步練習(xí)冊答案