(本小題14分)已知函數(shù)的圖像過點,且在點處的切線方程為,
(1)求函數(shù)的解析式 ;     
(2)求函數(shù)的單調區(qū)間。
(1)

由點M處得切線方程可知:
,解得
所求函數(shù)的解析式為
(2)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1) 若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2) 求f(x)的單調區(qū)間;
(3) 設g(x)=x2-2x,若對任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),(其中).
(1)討論函數(shù)的單調性;
(2)若,求函數(shù),的最值;
(3)設函數(shù),當時,若對于任意的,總存在唯一
,使得成立.試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),則(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題満分15分)
已知上是增函數(shù),在[0,2]上是減函數(shù),且方程有三個根,它們分別為
(1)求c的值;
(2)求證;
(3)求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù),已知時取極值,則a=
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
已知,且正整數(shù)n滿足
(1)求n ;
(2)若,是否存在,當時,恒成立。若存在,求出最小的;
若不存在,試說明理由。
(3)的展開式有且只有三個有理項,求。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

利用定積分的幾何意義,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù),若, 則
A.B.C.D.

查看答案和解析>>

同步練習冊答案