若點(diǎn)A(2,1),B(3,3),C(4,a)三點(diǎn)共線,則a的值為( 。
分析:分別計(jì)算出直線AB與直線AC的斜率,A、B、C三點(diǎn)共線,直線AB與直線AC的斜率相等,由此建立關(guān)于m的方程,解方程可得.
解答:解:∵A(2,1),B(3,3),
∴直線AB的斜率k1=
3-1
3-2
=2
同理可得:直線AC的斜率k2=
a-1
4-2
,
∵A、B、C三點(diǎn)共線,
∴k1=k2,即
a-1
4-2
=2,解得a=5
故選D
點(diǎn)評:本題考查三點(diǎn)共線,利用直線斜率公式解決是解題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3(ax+b)的圖象經(jīng)過點(diǎn)A(2,1)和B(5,2),記an=3f(n),n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
an
2n
,Tn=b1+b2+…bn,若Tn<m(m∈Z),求m的最小值;
(3)求使不等式(1+
1
a1
)(1+
1
a2
)(1+
1
a2
)
…(1+
1
an
)
p
2n+1
對一切n∈N*,均成立的最大實(shí)數(shù)p.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3(ax+b)圖象過點(diǎn)A(2,1)和B(5,2),設(shè)an=3f(n),n∈N*
(Ⅰ)求函數(shù)f(x)的解析式及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求使不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥a
2n+1
對一切n∈N*均成立的最大實(shí)數(shù)a;
(Ⅲ)對每一個k∈N*,在ak與ak+1之間插入2k-1個2,得到新數(shù)列:a1,2,a2,2,2,a3,2,2,2,2,a4,…,記為{bn},設(shè)Tn是數(shù)列{bn}的前n項(xiàng)和,試問是否存在正整數(shù)m,使Tm=2008?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
(1)直線2x+y+8=0與直線x+y+3=0的交點(diǎn)坐標(biāo)為(-5,2)
(2)已知點(diǎn)A(-2,-1),B(a,3)且|AB|=5,則a=1
(3)若兩平行直線2x+y-4=0與y=-2x-k-2的距離不大于
5
,則k的取值范圍是-11≤k≤-1,
(4)直線kx-y+1=3k(k∈R)恒過定點(diǎn)(3,1).
其中正確命題的個數(shù)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)A(2,1),B(3,3),C(4,a)三點(diǎn)共線,則a的值為              (     )

(A) 2        (B) 3        (C) 4          (D) 5

查看答案和解析>>

同步練習(xí)冊答案