P(-3,1)在橢圓a>b>0)的左準線上,過點P且方向為a=(2,-5)的光線,經(jīng)過直線y=-2反射后通過橢圓的左焦點,則這個橢圓的離心率為(  )

A.                         B.                            C.                         D.

解析:如下圖所示.kPA=.∴lPA?:5x+2y+13=0.

則交點A的坐標為(,-2),據(jù)光的反射知識知kAF=-kPA=.

lAF:5x-2y+5=0.

∴與x軸交點即左焦點F(-1,0),即c=1.

又左準線x==-a2=-3,∴a=.

∴e==.

答案:A

點評:由反射角等于入射角推出kAF=-kPA是解題之關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•懷化三模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(
3
3
2
)
,離心率e=
1
2
,若點M(x0,y0)在橢圓C上,則點N(
x0
a
,
y0
b
)
稱為點M的一個“橢點”,直線l交橢圓C于A、B兩點,若點A、B的“橢點”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點為D,上頂點為E,試探究△OAB的面積與△ODE的面積的大小關系,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:懷化三模 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(
3
,
3
2
)
,離心率e=
1
2
,若點M(x0,y0)在橢圓C上,則點N(
x0
a
y0
b
)
稱為點M的一個“橢點”,直線l交橢圓C于A、B兩點,若點A、B的“橢點”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點為D,上頂點為E,試探究△OAB的面積與△ODE的面積的大小關系,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省淮北市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省淮南市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

同步練習冊答案