【題目】如圖,在菱形中, , ,以4個(gè)頂點(diǎn)為圓心的扇形的半徑為1,若在該菱形中任意選取一點(diǎn),該點(diǎn)落在陰影部分的概率為,則圓周率的近似值為( )
A. B. C. D.
【答案】C
【解析】因?yàn)榱庑蔚膬?nèi)角和為360°,
所以陰影部分的面積為半徑為1的圓的面積,
故由幾何概型可知,
解得.選C。
【題型】單選題
【結(jié)束】
12
【題目】已知函數(shù)f(x)=,若g(x)=f(x)-a恰好有3個(gè)零點(diǎn),則a的取值范圍為( 。
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題中:
①命題: ;
②函數(shù)f(x)=2x﹣x2有三個(gè)零點(diǎn);
③對(duì)(x,y)∈{(x,y)|4x+3y﹣10=0},則x2+y2≥4.
④已知函數(shù) ,若△ABC中,角C是鈍角,那么f(sinA)>f(cosB)
其中所有真命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1) 把的圖象上每一點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的倍,再將橫坐標(biāo)向右平移 個(gè)單位,可得圖象,求,的值;
(2) 若對(duì)任意實(shí)數(shù)和任意,恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分別是A1C1 , BC的中點(diǎn).
(1)證明:平面AEB⊥平面BB1C1C;
(2)證明:C1F∥平面ABE;
(3)設(shè)P是BE的中點(diǎn),求三棱錐P﹣B1C1F的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】砂糖橘是柑橘類的名優(yōu)品種,因其味甜如砂糖故名.某果農(nóng)選取一片山地種植砂糖橘,收獲時(shí),該果農(nóng)隨機(jī)選取果樹(shù)20株作為樣本測(cè)量它們每一株的果實(shí)產(chǎn)量(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間(40,45],(45,50],(50,55],(55,60]進(jìn)行分組,得到頻率分布直方圖如圖所示.已知樣本中產(chǎn)量在區(qū)間(45,50]上的果樹(shù)株數(shù)是產(chǎn)量在區(qū)間(50,60]上的果樹(shù)株數(shù)的倍.
(1)求a,b的值;
(2)從樣本中產(chǎn)量在區(qū)間(50,60]上的果樹(shù)里隨機(jī)抽取兩株,求產(chǎn)量在區(qū)間(55,60]上的果樹(shù)至少有一株被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某算法的程序框圖如圖所示,若將輸出的(x,y)值依次記為(x1,y1),(x2,y2),…,(xn,yn),…
(1)若程序運(yùn)行中輸出的一個(gè)數(shù)組是(9,t),求t的值.
(2)程序結(jié)束時(shí),共輸出(x,y)的組數(shù)為多少?
(3)寫(xiě)出程序框圖的程序語(yǔ)句.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的奇函數(shù)f(x)的周期為4,且x∈(0,2)時(shí)f(x)=ln(x2﹣x+b),若函數(shù)f(x)在區(qū)間[﹣2,2]上恰有5個(gè)零點(diǎn),則實(shí)數(shù)b應(yīng)滿足的條件是( )
A.﹣1<b≤1
B.﹣1<b<1或b=
C. <b
D. <b≤1或b=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn , 向量 =(Sn , an+1), =(an+1,4)(n∈N*),且 ∥
(1)求{an}的通項(xiàng)公式
(2)設(shè)f(n)= bn=f(2n+4),求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的命題個(gè)數(shù)是( )
①. 如果共面, 也共面,則共面;
②.已知直線a的方向向量與平面,若// ,則直線a// ;
③若共面,則存在唯一實(shí)數(shù)使,反之也成立;
④.對(duì)空間任意點(diǎn)O與不共線的三點(diǎn)A、B、C,若=x+y+z
(其中x、y、z∈R),則P、A、B、C四點(diǎn)共面.
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com