已知函數(shù)對(duì)任意的恒有成立.
(1)當(dāng)b=0時(shí),記若在)上為增函數(shù),求c的取值范圍;
(2)證明:當(dāng)時(shí),成立;
(3)若對(duì)滿足條件的任意實(shí)數(shù)b,c,不等式恒成立,求M的最小值.
(1);(2)證明見解析;(3).
解析試題分析:(1)首先要討論題設(shè)的先決條件對(duì)恒成立,,即恒成立,這是二次不等式,由二次函數(shù)知識(shí),有,化簡之后有,從而.時(shí),在上是增函數(shù),我們用增函數(shù)的定義,即設(shè),恒成立,分析后得出的范圍;(2)
,問題變成證明在時(shí)恒成立,在的情況下,,而,可見,那當(dāng)時(shí),一定恒有,問題證畢;(3)由(2),在時(shí),,這時(shí)柺驗(yàn)證不等式成立,當(dāng)時(shí),不等式可化為,因此要求的最大值或者它的值域,
,而,因此,由此的取值范圍易得,的最小值也易得.
試題解析:(1)因?yàn)槿我獾?img src="http://thumb.zyjl.cn/pic5/tikupic/a8/d/avtqn.png" style="vertical-align:middle;" />恒有成立,
所以對(duì)任意的,即恒成立.
所以,從而.,即:.
當(dāng)時(shí),記()
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ef/5/brfx92.png" style="vertical-align:middle;" />在上為增函數(shù),所以任取,,
恒成立.
即任取,,成立,也就是成立.
所以,即的取值范圍是.
(2)由(1)得,且,
所以,因此.
故當(dāng)時(shí),有.
即當(dāng)時(shí),.
(3)由(2)知,,
當(dāng)時(shí),有
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2個(gè)小題滿分8分。
某加油站擬造如圖所示的鐵皮儲(chǔ)油罐(不計(jì)厚度,長度單位:米),其中儲(chǔ)油罐的中間為圓柱形,左右兩端均為半球形,(為圓柱的高,為球的半徑,).假設(shè)該儲(chǔ)油罐的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為千元,半球形部分每平方米建造費(fèi)用為3千元.設(shè)該儲(chǔ)油罐的建造費(fèi)用為千元.
(1)寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(2)求該儲(chǔ)油罐的建造費(fèi)用最小時(shí)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
據(jù)市場(chǎng)分析,廣饒縣馳中集團(tuán)某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量在10噸至25噸時(shí),月生產(chǎn)總成本(萬元)可以看成月產(chǎn)量(噸)的二次函數(shù).當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬元.
(1)寫出月總成本(萬元)關(guān)于月產(chǎn)量(噸)的函數(shù)關(guān)系;
(2)已知該產(chǎn)品銷售價(jià)為每噸1.6萬元,那么月產(chǎn)量為多少時(shí),可獲最大利潤;
(3)當(dāng)月產(chǎn)量為多少噸時(shí), 每噸平均成本最低,最低成本是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了綠化城市,準(zhǔn)備在如圖所示的區(qū)域DFEBC內(nèi)修建一個(gè)矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的內(nèi)部有一文物保護(hù)區(qū)不能占用,經(jīng)測(cè)量AB=100m,BC=80m,AE=30m,AF=20m。應(yīng)如何設(shè)計(jì)才能使草坪的占地面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=lg(1-x)+lg(1+x)+x4-2x2.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某森林出現(xiàn)火災(zāi),火勢(shì)正以100m2/分鐘的速度順風(fēng)蔓延,消防站接到報(bào)警立即派消防隊(duì)員前去,在火災(zāi)發(fā)生后5分鐘到達(dá)救火現(xiàn)場(chǎng),已知消防隊(duì)員在現(xiàn)場(chǎng)平均每人滅火50m2/分鐘,所消耗的滅火材料,勞務(wù)津貼等費(fèi)用為人均125元/分鐘,另附加每次救火所耗損的車輛、器械和裝備等費(fèi)用人均100元,而燒毀森林的損失費(fèi)60元/m2,應(yīng)該派多少消防隊(duì)員前去救火才能使總損失最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
遼寧號(hào)航母紀(jì)念章從2012年10月5日起開始上市.通過市場(chǎng)調(diào)查,得到該紀(jì)念章每1枚的市場(chǎng)價(jià) (單位:元)與上市時(shí)間(單位:天)的數(shù)據(jù)如下:
上市時(shí)間天 | 4 | 10 | 36 |
市場(chǎng)價(jià)元 | 90 | 51 | 90 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).設(shè), (max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記的最小值為A,的最大值為B,則( )
A.16 |
B. |
C. |
D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)a是實(shí)數(shù),討論關(guān)于x的方程lg(x-1)+lg(3-x)=lg(a-x)的實(shí)數(shù)解的個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com