已知函數(shù)f(x)=(b<0)
(1)求f(x)的定義域;
。2)判斷f(x)的奇偶性,并說明理由;
。3)指出f(x)在區(qū)間(-b,+∞)上的單調(diào)性,并予以證明.
解:(1)由得 或. ∴ f(x)的定義域?yàn)椋ǎ蓿?img align="absmiddle" width=16 height=41 src="http://thumb.zyjl.cn/pic7/pages/60RD/0014/0127/7d5c660cea83386fa70fc46349b5632f/C/image008.gif" v:shapes="_x0000_i1029">)(,+∞). (2) f(x)為奇函數(shù). ∵ . 又或 ∴ f(x)為奇函數(shù). (3)f(x)在(-b,+∞)上為減函數(shù). 設(shè),則
∵ , ∴ ,, ∴ ∴ , ∴ , 即. ∴ f(x)為(-b,+∞)上的減函數(shù).
|
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年上虞市質(zhì)檢一文) 已知函數(shù)f(x)=ax4+bx2+c的圖象經(jīng)過點(diǎn)(0,2),且在x=1處的切線方程
是y=-4x+.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)求函數(shù)y=f(x)在區(qū)間[-4,1]上的最值.查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河南省原名校高三上學(xué)期期聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=2sin(ωx+)(ω>0,0<<π)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式:
(2)已知=,且a∈(0,),求f(a)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河南省原名校聯(lián)盟高三上學(xué)期第一次摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=ln-a+x(a>0).
(Ⅰ)若=,求f(x)圖像在x=1處的切線的方程;
(Ⅱ)若的極大值和極小值分別為m,n,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年高三一輪精品復(fù)習(xí)單元測試(12)數(shù)學(xué)試卷解析版 題型:解答題
(本小題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c在x=-與x=1時都取得極值.
(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間;
(2)xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省商丘市高三第二次模擬考試數(shù)學(xué)理卷 題型:填空題
已知函數(shù)f(x)=,若f(x)存在零點(diǎn),則實(shí)數(shù)a的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com