已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞減,則滿足f(2x-1)<f(x+3)的x的取值范圍是
x>2或x<-
4
3
x>2或x<-
4
3
分析:利用函數(shù)的奇偶性、單調(diào)性去掉不等式中的符號“f”,轉(zhuǎn)化為具體不等式即可求解.
解答:解:因為f(x)為偶函數(shù),
所以f(2x-1)<f(x+3)可化為f(|2x-1|)<f(|x+3|),
又f(x)在區(qū)間[0,+∞)上單調(diào)遞減,所以|2x-1|>|x+3|,
解得x>2或x<-
4
3

故答案為:x>2或x<-
4
3
點評:本題考查函數(shù)的奇偶性、單調(diào)性及其應(yīng)用,考查抽象不等式的求解,考查學生靈活運用知識解決問題的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)f(x)在區(qū)間[0,π]上單調(diào)遞增,那么下列關(guān)系成立的是( 。
A、f(-π)>f(-2)>f(
π
2
)
B、f(-π)>f(-
π
2
)>f(-2)
C、f(-2)>f(-
π
2
)>f(-π)
D、f(-
π
2
)>f(-2)>f(π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

3、已知偶函數(shù)f(x)在(0,+∞)上單調(diào)遞增,則f(-3),f(-1),f(2)的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)f(x)在R上的任一取值都有導(dǎo)數(shù),且f′(1)=1,f(x+2)=f(x-2),則曲線y=f(x)在x=-5處的切線的斜率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)f(x)在區(qū)間[0,+∞)上滿足f′(x)>0則不等式f(2x-1)<f(
1
3
)的解集是( 。

查看答案和解析>>

同步練習冊答案