11.2015年我校組織學生積極參加科技創(chuàng)新大賽,其中作品A獲得省級獎,九位評委為作品A給出的分數(shù)如莖葉圖所示,記分員算得的平均分為89,復核員在復核時,發(fā)現(xiàn)有一個數(shù)字(莖葉圖中的x)無法看清.若記分員的計算無誤,則數(shù)字x應該是(  )
A.3B.2C.1D.0

分析 利用莖葉圖性質及平均數(shù)計算公式求解.

解答 解:由莖葉圖性質得:
$\frac{1}{9}$(86+87+88+88+89+90+90+90+x+92)=89,
解得x=1.
故選:C.

點評 本題考查實數(shù)值的求法,是基礎題,解題時要認真審題,注意莖葉圖性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知f(x)=$\left\{\begin{array}{l}{x+1(x>0)}\\{π(x=0)}\\{{x}^{2}(x<0)}\end{array}\right.$,
(1)求f(1),f(-2),f(f(-3))
(2)如果f(x0)=3,求x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.命題“若a=0或b=0,則ab=0”的逆否命題是真命題(填真命題或假命題).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列函數(shù)中,最小值為4的函數(shù)是( 。
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{4}{sinx}$(0<x<π)
C.y=ex+4e-xD.y=log3x+4logx3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知全集為R,函數(shù)f(x)=$\sqrt{\frac{1}{x-1}}$的定義域為集合A,集合B={x|x(x-1)≥2}
(1)求A∩B;
(2)若C={x|1-m<x≤m},C⊆(∁RB),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.曲線y=$\sqrt{2-{x}^{2}}$與直線y=-x+b有兩個不同的交點,則b的取值范圍為( 。
A.-1<b<2B.$\sqrt{2}$≤b<2C.$\sqrt{2}$≤b≤2D.-2≤b≤2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列四個結論:
①兩條直線和同一個平面垂直,則這兩條直線平行;
②兩條直線沒有公共點,則這兩條直線平行;
③兩條直線都和第三條直線垂直,則這兩條直線平行;
④一條直線和一個平面內(nèi)任意直線沒有公共點,則這條直線和這個平面平行.
其中正確的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.給出下列幾種說法:
①若logab•log3a=1,則b=3;
②若a+a-1=3,則a-a-1=$\sqrt{5}$;
③f(x)=log(x+$\sqrt{{x}^{2}+1}$為奇函數(shù);
④f(x)=$\frac{1}{x}$為定義域內(nèi)的減函數(shù);
⑤若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且f(2)=1,則f(x)=log${\;}_{\frac{1}{2}}$x,其中說法正確的序號為①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.關于x、y的方程組$\left\{\begin{array}{l}{2x+my=5}\\{nx-4y=2}\end{array}\right.$的增廣矩陣經(jīng)過變換后得到$(\begin{array}{l}{1}&{0}&{3}\\{0}&{1}&{1}\end{array})$,則$(\begin{array}{l}{m}\\{n}\end{array})$=$(\begin{array}{l}{-1}\\{2}\end{array})$.

查看答案和解析>>

同步練習冊答案