【題目】如圖,空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn),且AB=AD,BC=DC.
(1)求證:∥平面EFGH;
(2)求證:四邊形EFGH是矩形.
【答案】(1)見解析; (2)見解析.
【解析】
試題分析:(1)證明線面平行一般證明線線平行或面面平行,本題中利用中點(diǎn)產(chǎn)生的中位線得到的EH∥BD來(lái)證明 平面;(2)由四個(gè)中點(diǎn)可利用中位線性質(zhì)證明四邊形為平行四邊形,利用等腰三角形三線合一的性質(zhì)得到平面(BD中點(diǎn)為O)從而得到,所以四邊形是矩形
試題解析:(1)∵E,H分別為AB, DA的中點(diǎn).
∴EH∥BD,又平面EFGH,平面EFGH,
平面EFGH;
(2)取BD中點(diǎn)O,連續(xù)OA,OC.
∵AB=AD,BC=DC.∴AO⊥BD,CO⊥BD,
又AO∩CO=0.∴BD⊥平面AOC.
∴BD⊥AC.
∵E,F,G,H為AB,BC,CD,DA的中點(diǎn).
∴EH∥BD,且EH=BD;FG∥BD,且FG=BD,EF∥AC.
∴EH∥FG,且EH=FG.∴四邊形EFGH是平行四邊形.
∵AC⊥BD,又EF∥AC,EH∥BD.∴EF⊥EH.∴四邊形EFGH為矩形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修:4﹣2:矩陣與變換
若圓C:x2+y2=1在矩陣 (a>0,b>0)對(duì)應(yīng)的變換下變成橢圓E: ,求矩陣A的逆矩陣A﹣1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,圓C的方程為ρ=2acosθ(a≠0),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求圓C的直角坐標(biāo)方程(化為標(biāo)準(zhǔn)方程)和直線l的極坐標(biāo)方程;
(2)若直線l與圓C只有一個(gè)公共點(diǎn),且a<1,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)人從出生到死亡,在每個(gè)生日都測(cè)量身高,并作出這些數(shù)據(jù)的散點(diǎn)圖,這些點(diǎn)將不會(huì)落在一條直線上,但在一段時(shí)間內(nèi)的增長(zhǎng)數(shù)據(jù)有時(shí)可以用線性回歸來(lái)分析,下表是一位母親給兒子做的成長(zhǎng)記錄:
年齡/周歲 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 91.8 | 97.6 | 104.2 | 110.9 | 115.6 | 122.0 | 128.5 |
年齡/周歲 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
身高/cm | 134.2 | 140.8 | 147.6 | 154.2 | 160.9 | 167.5 | 173.0 |
(1)年齡(解釋變量)和身高(預(yù)報(bào)變量)之間具有怎樣的相關(guān)關(guān)系?
(2)如果年齡相差5歲,則身高有多大差異(3~16歲之間)?
(3)如果身高相差20 cm,其年齡相差多少(3~16歲之間)?
(4)試判斷該函數(shù)模型是否能夠較好地反映年齡與身高的關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|3x﹣1|+ax+3,a∈R.
(1)若a=1,解不等式f(x)≤4;
(2)若函數(shù)f(x)有最小值,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)z1 , z2是復(fù)數(shù),則下列命題中的假命題是( )
A.若|z1﹣z2|=0,則 =
B.若z1= ,則 =z2
C.若|z1|=|z2|,則z1? =z2?
D.若|z1|=|z2|,則z12=z22
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中.
若,求函數(shù)在區(qū)間上的取值范圍;
若,且對(duì)任意的,都有,求實(shí)數(shù)a的取值范圍.
若對(duì)任意的,,都有,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為 (t為參數(shù),α為直線的傾斜角).
(I)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C有唯一的公共點(diǎn),求角α的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在上學(xué)期依次舉行了“法律、環(huán)保、交通”三次知識(shí)競(jìng)賽活動(dòng),要求每位同學(xué)至少參加一次活動(dòng).該高校2014級(jí)某班50名學(xué)生在上學(xué)期參加該項(xiàng)活動(dòng)的次數(shù)統(tǒng)計(jì)如圖所示.
(1)從該班中任意選兩名學(xué)生,求他們參加活動(dòng)次數(shù)不相等的概率.
(2)從該班中任意選兩名學(xué)生,用ξ表示這兩人參加活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.
(3)從該班中任意選兩名學(xué)生,用η表示這兩人參加活動(dòng)次數(shù)之和,記“函數(shù)f(x)=x2﹣ηx﹣1在區(qū)間(3,5)上有且只有一個(gè)零點(diǎn)”為事件A,求事件A發(fā)生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com