【題目】某樂園按時段收費,收費標準為:每玩一次不超過1小時收費10元,超過1小時的部分每小時收費8元(不足1小時的部分按1小時計算).現(xiàn)有甲、乙二人參與但都不超過4小時,甲、乙二人在每個時段離場是等可能的.為吸引顧客,每個顧客可以參加一次抽獎活動.
(1)用(10,10)表示甲乙玩都不超過1小時的付費情況,求甲、乙二人付費之和為44元的概率;
(2)抽獎活動的規(guī)則是:顧客通過操作按鍵使電腦自動產生兩個[0,1]之間的均勻隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該顧客中獎;若電腦顯示“謝謝”,則不中獎,求顧客中獎的概率.
【答案】
(1)
解:設甲付費a元,乙付費b元,其中a,b=10,18,26,34.
則甲、乙二人的費用構成的基本事件空間為:
(10,10),(10,18),(10,26),(10,34),(18,10),(18,18),(18,26),(18,34),
(26,10),(26,18),(26,26),(26,34),(34,10),(34,18),(34,26),(34,34)共16種情形.
其中,(10,34),(18,26),(26,18),(34,10)這4種情形符合題意.
故“甲、乙二人付費之和為44元”的概率為 .
(2)
解:由已知0≤x≤1,0≤y≤1點(x,y)如圖的正方形OABC內,
由條件 ,得到的區(qū)域為圖中陰影部分,
由x﹣2y+1=0,令x=0得 ;令x=1得y=1;
由條件滿足的區(qū)域面積 .
設顧客中獎的事件為N,則顧客中獎的概率 .
【解析】(1)設甲付費a元,乙付費b元,其中a,b=10,18,26,34,由此利用列舉法能求出“甲、乙二人付費之和為44元”的概率.(2)由已知0≤x≤1,0≤y≤1點(x,y)在正方形OABC內,作出條件 的區(qū)域,由此能求出顧客中獎的概率.
【考點精析】掌握程序框圖是解答本題的根本,需要知道程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
科目:高中數(shù)學 來源: 題型:
【題目】已知a為實數(shù),p:點M(1,1)在圓(x+a)2+(y﹣a)2=4的內部; q:x∈R,都有x2+ax+1≥0.
(1)若p為真命題,求a的取值范圍;
(2)若q為假命題,求a的取值范圍;
(3)若“p且q”為假命題,且“p或q”為真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC= ,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x| <2x<4},B={x|0<log2x<2}.
(1)求A∩B和A∪B;
(2)記M﹣N={x|x∈M,且xN},求A﹣B與B﹣A.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解用戶對其產品的滿意度,從某地區(qū)隨機調查了100個用戶,得到用戶對產品的滿意度評分頻率分布表如下:
組別 | 分組 | 頻數(shù) | 頻率 |
第一組 | (50,60] | 10 | 0.1 |
第二組 | (60,70] | 20 | 0.2 |
第三組 | (70,80] | 40 | 0.4 |
第四組 | (80,90] | 25 | 0.25 |
第五組 | (90,100) | 5 | 0.05 |
合計 | 100 | 1 |
(1)根據(jù)上面的頻率分布表,估計該地區(qū)用戶對產品的滿意度評分超過70分的概率;
(2)請由頻率分布表中數(shù)據(jù)計算眾數(shù)、中位數(shù),平均數(shù),根據(jù)樣本估計總體的思想,若平均分低于75分,視為不滿意.判斷該地區(qū)用戶對產品是否滿意?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1=AB=1,AD=2,E為BC的中點,點M,N分別為棱DD1 , A1D1的中點.
(1)求證:平面CMN∥平面A1DE;
(2)求證:平面A1DE⊥平面A1AE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2﹣2x﹣4y+1=0.
(1)求過點M(3,1)的圓C的切線方程;
(2)若直線l:ax﹣y+4=0與圓C相交于A,B兩點,且弦AB的長為 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:“x∈{x|﹣1≤x≤1},都有不等式x2﹣x﹣m<0成立”是真命題.
(1)求實數(shù)m的取值集合B;
(2)設不等式(x﹣3a)(x﹣a﹣2)<0的解集為A,若x∈A是x∈B的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,已知c=acosB+bsinA.
(1)求A;
(2)若a=2,b=c,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com