(2013•楊浦區(qū)一模)“a=3”是“函數(shù)f(x)=x2-2ax+2在區(qū)間[3,+∞)內(nèi)單調(diào)遞增”的( 。
分析:先求出函數(shù)f(x)=x2-2ax+2的單調(diào)增區(qū)間,然后由題意知[3,+∞)是它單調(diào)增區(qū)間的子區(qū)間,利用對稱軸與區(qū)間的位置關(guān)系即可求出a的范圍,再根據(jù)充分必要條件進(jìn)行求解;
解答:解:∵函數(shù)f(x)=x2-2ax+2在區(qū)間[3,+∞)內(nèi)單調(diào)遞增,
可得f(x)的對稱軸為x=-
-2a
2
=a,開口向上,可得a≤3,
∴“a=3”⇒“函數(shù)f(x)=x2-2ax+2在區(qū)間[3,+∞)內(nèi)單調(diào)遞增”,
∴“a=3”是“函數(shù)f(x)=x2-2ax+2在區(qū)間[3,+∞)內(nèi)單調(diào)遞增”的充分而不必要條件,
故選A;
點(diǎn)評:此題主要考查二次函數(shù)的性質(zhì)及其對稱軸的應(yīng)用,以及充分必要條件的定義,是一道基礎(chǔ)題;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•楊浦區(qū)一模)已知F1、F2為雙曲線C:
x2
4
-y2=1
的左、右焦點(diǎn),點(diǎn)P在C上,∠F1PF2=60°,則P到x軸的距離為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•楊浦區(qū)一模)橢圓T的中心為坐標(biāo)原點(diǎn)O,右焦點(diǎn)為F(2,0),且橢圓T過點(diǎn)E(2,
2
).△ABC的三個(gè)頂點(diǎn)都在橢圓T上,設(shè)三條邊的中點(diǎn)分別為M,N,P.
(1)求橢圓T的方程;
(2)設(shè)△ABC的三條邊所在直線的斜率分別為k1,k2,k3,且ki≠0,i=1,2,3.若直線OM,ON,OP的斜率之和為0,求證:
1
k1
+
1
k2
+
1
k3
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•楊浦區(qū)一模)若函數(shù)f(x)=3x的反函數(shù)為f-1(x),則f-1(1)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•楊浦區(qū)一模)若復(fù)數(shù)z=
1-i
i
 (i為虛數(shù)單位),則|z|=
2
2

查看答案和解析>>

同步練習(xí)冊答案