【題目】某地棚戶區(qū)改造建筑平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內(nèi)接四邊形是原棚戶區(qū)建筑用地,測(cè)量可知邊界萬(wàn)米,萬(wàn)米,萬(wàn)米.

(1)請(qǐng)計(jì)算原棚戶區(qū)建筑用地的面積及的長(zhǎng);

(2)因地理?xiàng)l件的限制,邊界不能更改,而邊界可以調(diào)整,為了提高棚戶區(qū)建筑用地的利用率,請(qǐng)?jiān)趫A弧上設(shè)計(jì)一點(diǎn),使得棚戶區(qū)改造后的新建筑用地的面積最大,并求出最大值.

【答案】(1) 萬(wàn)米. 萬(wàn)平方米.

(2) 所求面積的最大值為萬(wàn)平方米,此時(shí)點(diǎn)為弧ABC的中點(diǎn).

【解析】試題分析:(1)利用圓內(nèi)接四邊形得到對(duì)角互補(bǔ),再利用余弦定理求出相關(guān)邊長(zhǎng),再利用三角形的面積公式和分割法進(jìn)行求解 ;(2)利用余弦定理和基本不等式進(jìn)行求解.

試題解析:(1)根據(jù)題意知,四邊形ABCD內(nèi)接于圓,∴∠ABC+∠ADC=180°.

ABC中,由余弦定理,得AC2AB2BC2-2AB·BC·cos∠ABC,

AC2=42+62-2×4×6×cos∠ABC.

ADC中,由余弦定理,得

AC2AD2DC2-2AD·DC·cos∠ADC,即AC2=42+22-2×4×2×cos∠ADC.

cos∠ABC=-cos∠ADC,

∴cos∠ABCAC2=28,即AC=2萬(wàn)米,

又∠ABC∈(0,π),∴∠ABC.

S四邊形ABCDSABCSADC×4×6×sin×2×4×sin=8 (平方萬(wàn)米).

(2)由題意知,S四邊形APCDSADCSAPC,

SADCAD·CD·sin=2 (平方萬(wàn)米).

設(shè)APx,CPySAPCxysinxy.

APC,由余弦定理AC2x2y2-2xy·cosx2y2xy=28,

x2y2xy≥2xyxyxy

當(dāng)且僅當(dāng)xy時(shí)取等號(hào),∴xy≤28.

S四邊形APCD=2xy≤2×28=9 (平方萬(wàn)米),

故所求面積的最大值為9平方萬(wàn)米,此時(shí)點(diǎn)P的中點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上。若右焦點(diǎn)F到直線xy+2=0的距離為3。

(1)求橢圓的方程;

(2)設(shè)直線ykxm(k≠0)與橢圓相交于不同的兩點(diǎn)M、N。當(dāng)|AM|=|AN|時(shí),求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處的切線方程為

(1)求的解析式;

(2)若對(duì)任意的均有求實(shí)數(shù)k的取值范圍;

(3)設(shè)為兩個(gè)正數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是平面,,是直線,給出下列命題:

,,則;

,,,,則

如果,,是異面直線,則相交;

,且,,則,且

其中正確確命題的序號(hào)是_____(把正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)當(dāng),且時(shí),求的值域;

(2)若存在實(shí)數(shù)使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,上頂點(diǎn)到直線的距離為.

(1)求橢圓的方程;

(2)是否存在過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),線段的中點(diǎn)為,使得?若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015 年 12 月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為 2015 年以來(lái)最嚴(yán)重的污染過(guò)程,為了探究車(chē)流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市 2015 年 12 月份某星期星期一到星期日某一時(shí)間段車(chē)流量與的數(shù)據(jù)如表:

時(shí)間

星期一

星期二

星期三

星期四

星期五

星期六

星期日

車(chē)流量(萬(wàn)輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)由散點(diǎn)圖知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(提示數(shù)據(jù):

(2)利用(1)所求的回歸方程,預(yù)測(cè)該市車(chē)流量為 12 萬(wàn)輛時(shí)的濃度.

參考公式:回歸直線的方程是,

其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代的數(shù)學(xué)家們最早發(fā)現(xiàn)并應(yīng)用勾股定理,而最先對(duì)勾股定理進(jìn)行證明的是三國(guó)時(shí)期的數(shù)學(xué)家趙爽.趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法,給出了勾股定理的詳細(xì)證明。在這幅“勾股圓方圖”中,個(gè)相等的直角三角形再加上中間的那個(gè)小正方形組成一個(gè)大的正方形。若直角三角形的較小銳角的正切值為,現(xiàn)向該正方形區(qū)域內(nèi)投擲-枚飛鏢,則飛鏢落在小正方形內(nèi)(陰影部分)的概率是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】容器中盛有5個(gè)白乒乓球和3個(gè)黃乒乓球.

(1)“從8個(gè)球中任意取出1個(gè),取出的是白球”與“從剩下的7個(gè)球中任意取出1個(gè),取出的還是白球”這兩個(gè)事件是否相互獨(dú)立?為什么?

(2)“從8個(gè)球中任意取出1個(gè),取出的是白球”與“把取出的1個(gè)白球放回容器,再?gòu)娜萜髦腥我馊〕?個(gè),取出的是黃球”這兩個(gè)事件是否相互獨(dú)立?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案