【題目】已知函數(shù)f(x)=x3-2x2+3x(x∈R)的圖象為曲線C.
(1)求過曲線C上任意一點切線斜率的取值范圍;
(2)若在曲線C上存在兩條相互垂直的切線,求其中一條切線與曲線C的切點的橫坐標的取值范圍.
【答案】(1)[-1,+∞);(2)(-∞,2-]∪(1,3)∪[2+,+∞).
【解析】試題分析:(1)先求導函數(shù),然后根據(jù)導函數(shù)求出其取值范圍,從而可求出曲線C上任意一點處的切線的斜率的取值范圍;(2)根據(jù)(1)可知k與﹣的取值范圍,從而可求出k的取值范圍,然后解不等式可求出曲線C的切點的橫坐標取值范圍.
解析:
(1)由題意得f′(x)=x2-4x+3,則f′(x)=(x-2)2-1≥-1,
即過曲線C上任意一點切線斜率的取值范圍是[-1,+∞).
(2)設曲線C的其中一條切線的斜率為k,則由(2)中條件并結合(1)中結論可知,
解得-1≤k<0或k≥1,故由-1≤x2-4x+3<0或x2-4x+3≥1,
得x∈(-∞,2-]∪(1,3)∪[2+,+∞)
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}滿足an+1+(﹣1)nan=2n﹣1,則{an}的前60項和為( )
A. 3690 B. 3660 C. 1845 D. 1830
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的部分圖象如圖,M是圖象的一個最低點,圖象與x軸的一個交點的坐標為,與y軸的交點坐標為.
(1)求A,,的值;
(2)若關于x的方程在上有一解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著“中華好詩詞”節(jié)目的播出,掀起了全民誦讀傳統(tǒng)詩詞經(jīng)典的熱潮.某社團為調查大學生對于“中華詩詞”的喜好,從甲、乙兩所大學各隨機抽取了40名學生,記錄他們每天學習“中華詩詞”的時間,并整理得到如下頻率分布直方圖:
根據(jù)學生每天學習“中華詩詞”的時間,可以將學生對于“中華詩詞”的喜好程度分為三個等級 :
(Ⅰ)從甲大學中隨機選出一名學生,試估計其“愛好”中華詩詞的概率;
(Ⅱ)從兩組“癡迷”的同學中隨機選出2人,記為選出的兩人中甲大學的人數(shù),求的分布列和數(shù)學期望;
(Ⅲ)試判斷選出的這兩組學生每天學習“中華詩詞”時間的平均值與的大小,及方差與的大。(只需寫出結論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】節(jié)約資源和保護環(huán)境是中國的基本國策.某化工企業(yè),積極響應國家要求,探索改良工藝,使排放的廢氣中含有的污染物數(shù)量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良后所排放的廢氣中含有的污染物數(shù)量為.設改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良工藝后所排放的廢氣中含有的污染物數(shù)量為,則第n次改良后所排放的廢氣中的污染物數(shù)量,可由函數(shù)模型給出,其中n是指改良工藝的次數(shù).
(1)試求改良后所排放的廢氣中含有的污染物數(shù)量的函數(shù)模型;
(2)依據(jù)國家環(huán)保要求,企業(yè)所排放的廢氣中含有的污染物數(shù)量不能超過,試問至少進行多少次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達標.
(參考數(shù)據(jù):取)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是偶函數(shù)
(1)求k的值;
(2)若函數(shù)的圖象與直線沒有交點,求b的取值范圍;
(3)設,若函數(shù)與的圖象有且只有一個公共點,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】企業(yè)需為員工繳納社會保險,繳費標準是根據(jù)職工本人上一年度月平均工資(單位:元)的繳納,
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
t | 1 | 2 | 3 | 4 | 5 |
y | 270 | 330 | 390 | 460 | 550 |
某企業(yè)員工甲在2014年至2018年各年中每月所撒納的養(yǎng)老保險數(shù)額y(單位:元)與年份序號t的統(tǒng)計如下表:
(1)求出t關于t的線性回歸方程;
(2)試預測2019年該員工的月平均工資為多少元?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
(注:,,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com