如圖,在底面是菱形的四棱錐P-ABC中,∠ABC=600,PA=AC=aPB=PD=,點EPD上,且PE:ED=2:1.
(Ⅰ)證明PA⊥平面ABCD;
(Ⅱ)求以AC為棱,EACDAC為面的二面角的大。

題18圖

 
 

 

(Ⅰ)證明: 因為底面ABCD是菱形,∠ABC=60°,
所以AB=AD=AC=a, 在△PAB中,
由PA2+AB2=2a2=PB2  知PA⊥AB.
同理,PA⊥AD,所以PA⊥平面ABCD
(II)解:作EG//PA交AD于G,
由PA⊥平面ABCD.
知EG⊥平面ABCD.作GH⊥AC于H,連結(jié)EH,則EH⊥AC,∠EHG即為二面角的平面角.
又PE : ED="2" : 1,所以
從而   
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)如圖,四棱柱ABCD—ABCD中,AD平面ABCD,底面ABCD是邊長為1的正方形,側(cè)棱AA=2.
(1)求證:CD∥平面ABBA;
(2)求直線BD與平面ACD所成角的正弦值;
(3)求二面角D—AC一A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)如圖,已知正三棱柱的底面正三角形的邊長是2,D是的中點,直線與側(cè)面所成的角是.

⑴求二面角的大;
⑵求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



本題滿分15分)如圖,在矩形中,點分別
在線段上,.沿直線
翻折成,使平面. 
(Ⅰ)求二面角的余弦值;
(Ⅱ)點分別在線段上,若沿直線將四
邊形向上翻折,使重合,求線段
的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,三棱柱中,側(cè)面底面,,
,O中點.
(Ⅰ)證明:平面
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在上是否存在一點,使得平面,若不存在,說明理由;若存在,
確定點的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)在直三棱柱中,,直線與平面角;

(1)求證:平面平面
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE

為平行四邊形,DC平面ABC ,,
(1)證明:平面ACD平面;
(2)記,表示三棱錐A-CBE的體積,求的表達(dá)式;
(3)當(dāng)取得最大值時,求證:AD=CE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在棱長為1的正方體中,分別為棱的中點,是側(cè)面的中心,則空間四邊形在正方體的六個面上的射影圖形面積的最大值是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方體的棱長為3,點上,且,點在平面上,且動點到直線的距離與到點的距離相等,在平面直角坐標(biāo)系中,動點的軌跡方程是               

查看答案和解析>>

同步練習(xí)冊答案