)已知兩點A(0,-3),B(4,0),若點P是圓x2+y2-2y=0上的動點,則△ABP面積的最小值為(  )

(A)6 (B) (C)8 (D)

 

B

【解析】如圖,過圓心C向直線AB作垂線交圓于點P,連接BP,AP,這時△ABP的面積最小.直線AB的方程為+=1,

3x-4y-12=0,圓心C到直線AB的距離為d==,

∴△ABP的面積的最小值為×5×(-1)=.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十第八章第一節(jié)練習卷(解析版) 題型:選擇題

已知直線l過點(m,1),(m+1,tanα+1),(  )

(A)α一定是直線l的傾斜角

(B)α一定不是直線l的傾斜角

(C)α不一定是直線l的傾斜角

(D)180°-α一定是直線l的傾斜角

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十八第八章第九節(jié)練習卷(解析版) 題型:選擇題

直線y=kx+1,k變化時,此直線被橢圓+y2=1截得的最大弦長是(  )

(A)4 (B)

(C)2 (D)不能確定

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十五第八章第六節(jié)練習卷(解析版) 題型:選擇題

設雙曲線的一個焦點為F,虛軸的一個端點為B,如果直線FB與該雙曲線的一條漸近線垂直,那么此雙曲線的離心率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十二第八章第三節(jié)練習卷(解析版) 題型:填空題

設二次函數(shù)y=x2-x+1x軸正半軸的交點分別為A,B,y軸正半軸的交點是C,則過A,B,C三點的圓的標準方程是    .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十二第八章第三節(jié)練習卷(解析版) 題型:選擇題

圓心在y軸上,半徑為1,且過點(1,2)的圓的方程為(  )

(A)x2+(y-2)2=1 (B)x2+(y+2)2=1

(C)(x-1)2+(y-3)2=1 (D)x2+(y-3)2=1

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十九第八章第十節(jié)練習卷(解析版) 題型:填空題

過拋物線y2=2px(p>0)上一定點P(x0,y0)(y0>0)作兩直線分別交拋物線于A(x1,y1),B(x2,y2),PAPB的斜率存在且傾斜角互補時,的值為    .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十三第八章第四節(jié)練習卷(解析版) 題型:選擇題

若圓C:x2+y2+2x-4y+3=0關于直線2ax+by+6=0對稱,則由點(a,b)向圓所作的切線長的最小值是(  )

(A)2 (B)3 (C)4 (D)6

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)二十第三章第四節(jié)練習卷(解析版) 題型:解答題

已知函數(shù)f(x)=sin(2x+).

(1)求函數(shù)y=f(x)的單調遞減區(qū)間.

(2)畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.

 

查看答案和解析>>

同步練習冊答案