已知正項(xiàng)非常數(shù)數(shù)列{an}、{bn}滿足:an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列,令cn,則下列關(guān)于數(shù)列{cn}的說(shuō)法正確的是

[  ]
A.

{cn}為等差數(shù)列

B.

{cn}為等比數(shù)列

C.

{cn}的每一項(xiàng)為奇數(shù)

D.

{cn}的每一項(xiàng)為偶數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和記為Sn,前kn項(xiàng)和記為Skn(n,k∈N*),對(duì)給定的常數(shù)k,若
S(k+1)n
Skn
是與n無(wú)關(guān)的非零常數(shù)t=f(k),則稱該數(shù)列{an}是“k類和科比數(shù)列”.
(理科)(1)已知Sn=(
an+1
2
)2an>0
,求數(shù)列{an}的通項(xiàng)公式;
(2)證明(1)的數(shù)列{an}是一個(gè)“k類和科比數(shù)列”;
(3)設(shè)正數(shù)列{cn}是一個(gè)等比數(shù)列,首項(xiàng)c1,公比Q(Q≠1),若數(shù)列{lgcn}是一個(gè)“k類和科比數(shù)列”,探究c1與Q的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)首項(xiàng)為a1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,q為非零常數(shù),已知對(duì)任意正整數(shù)n,m,Sn+m=Sm+qmSn總成立.
(Ⅰ)求證:數(shù)列{an}是等比數(shù)列;
(Ⅱ)若不等的正整數(shù)m,k,h成等差數(shù)列,試比較amm•ahh與ak2k的大。
(Ⅲ)若不等的正整數(shù)m,k,h成等比數(shù)列,試比較
a
1
m
m
a
1
h
h
a
2
k
k
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)正項(xiàng)數(shù)列{an}的前項(xiàng)和為Sn,q為非零常數(shù).已知對(duì)任意正整數(shù)n,m,當(dāng)n>m時(shí),Sn-Sm=qm•Sn-m總成立.
(1)求證數(shù)列{an}是等比數(shù)列; 
(2)若正整數(shù)n,m,k成等差數(shù)列,求證:
1
Sn
+
1
Sk
2
Sm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,q為非零常數(shù).已知對(duì)任意正整數(shù)n,m,當(dāng)n>m時(shí),Sn-Sm=qm•Sn-m總成立.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若互不相等的正整數(shù)n,m,k成等差數(shù)列,比較Sn+Sk,2Sm的大。
(3)若正整數(shù)n,m,k成等差數(shù)列,求證:
1
Sn
+
1
Sk
2
Sm

查看答案和解析>>

同步練習(xí)冊(cè)答案