在等差數(shù)列{an}中,首項(xiàng)a1=0,公差d≠0,若ama1a2+…+a9,則m的值為(  )
A.37B. 36C.20D.19
A
ama1a2+…+a9,得(m-1)d=9a5=36d,所以m=37.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足恰好是等比數(shù)列的前三項(xiàng).
(Ⅰ)求數(shù)列、的通項(xiàng)公式;
(Ⅱ)記數(shù)列的前項(xiàng)和為,若對任意的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列{an}的通項(xiàng)公式是an=-n2+12n-32,其前n項(xiàng)和是Sn,對任意的m,n∈N*m<n,則SnSm的最大值是(  ).
A.-21B.4 C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,對于任意的n∈NanSn,a成等差數(shù)列,設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,且bn,若對任意的實(shí)數(shù)x∈(1,e](e是自然對數(shù)的底)和任意正整數(shù)n,總有Tn<r(r∈N).則r的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且對任意正整數(shù)n,點(diǎn)(an+1,Sn)在直線3x+2y-3=0上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,求出λ的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知各項(xiàng)均不相等的等差數(shù)列{an}的前5項(xiàng)和為S5=35,且a1+1,a3+1,a7+1成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列的前n項(xiàng)和,問是否存在常數(shù)m,使Tnm,若存在,求m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)1=a1a2≤…≤a7,其中a1,a3,a5,a7成公比為q的等比數(shù)列,a2a4、a6成公差為1的等差數(shù)列,則q的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等比數(shù)列{an}中,a1=1,且4a2,2a3a4成等差數(shù)列,則a2a3a4等于 (  ).
A.1B.4C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若等差數(shù)列的前n項(xiàng)和為Sn,且S3=6,a1=4,則公差d等于 (    )
A.1B.C.-2D.3

查看答案和解析>>

同步練習(xí)冊答案