有一塊邊長(zhǎng)為4米的正方形鋼板,現(xiàn)對(duì)其進(jìn)行切割,焊接成一個(gè)長(zhǎng)方體無(wú)蓋容器(切、焊損耗忽略不計(jì)),有人用數(shù)學(xué)知識(shí)作了如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)小正方形,剩余部分圍成長(zhǎng)方體.
(Ⅰ)求這種切割、焊接而成的長(zhǎng)方體的最大容積V1
(Ⅱ)請(qǐng)問(wèn):能重新設(shè)計(jì),使所得長(zhǎng)方體的容器的容積V2>V1嗎?若能、給出你的一種設(shè)計(jì)方案.
分析:(I)設(shè)出小正方形的邊長(zhǎng)為x,則長(zhǎng)方體的長(zhǎng)寬都為4-2x,體積等于長(zhǎng)×寬×高,求出體積的導(dǎo)數(shù),令其等于零得出最大容積.
(II)主要對(duì)題意理解清楚,說(shuō)的是材料有所浪費(fèi),想到在兩個(gè)角切去小正方形,去下的小正方形焊到對(duì)邊上組成新的長(zhǎng)方體體積比原來(lái)的大.
解答:解:(I)設(shè)切去正方形邊長(zhǎng)為x,則焊接成的長(zhǎng)方體的底面邊長(zhǎng)為4-2x,高為x,
∴V1=(4-2x)2•x=4(x3-4x2+4x)(0<x<2).
∴V1′=4(3x2-8x+4).
令V1′=0,得x1=
2
3
,x2=2(舍去).
而V1′=12(x-
2
3
)(x-2),
又當(dāng)x<
2
3
時(shí),V1′>0;當(dāng)
2
3
<x<2時(shí),V1′<0,
∴當(dāng)x=
2
3
時(shí),V1取最大值
128
27

(II)重新設(shè)計(jì)方案如下:
如圖①,在正方形的兩個(gè)角處各切下一個(gè)邊長(zhǎng)為1的小正方形;
如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;
如圖③,將圖②焊成長(zhǎng)方體容器.
新焊長(zhǎng)方體容器底面是一長(zhǎng)方形,長(zhǎng)為3,寬為2,
此長(zhǎng)方體容積V2=3×2×1=6,
顯然V2>V1
故第二種方案符合要求.
點(diǎn)評(píng):此題考查利用導(dǎo)數(shù)求閉區(qū)間的最值以及第二問(wèn)是開(kāi)放性問(wèn)題,考查學(xué)生的實(shí)際操作能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一次數(shù)學(xué)實(shí)踐活動(dòng)課上,老師給一個(gè)活動(dòng)小組安排了這樣的一個(gè)任務(wù):設(shè)計(jì)一個(gè)方案,將一塊邊長(zhǎng)為4米的正方形鐵片,通過(guò)裁剪、拼接的方式,將它焊接成容積至少有5立方米的長(zhǎng)方體無(wú)蓋容器(只有一個(gè)下底面和側(cè)面的長(zhǎng)方體).該活動(dòng)小組接到任務(wù)后,立刻設(shè)計(jì)了一個(gè)方案,如下圖所示,按圖1在正方形鐵片的四角裁去四個(gè)相同的小正方形后,將剩下的部分焊接成長(zhǎng)方體(如圖2).請(qǐng)你分析一下他們的設(shè)計(jì)方案切去邊長(zhǎng)為多大的小正方形后能得到的最大容積,最大容積是多少?是否符合要求?若不符合,請(qǐng)你幫他們?cè)僭O(shè)計(jì)一個(gè)能符合要求的方案,簡(jiǎn)單說(shuō)明操作過(guò)程和理由.精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在福建省第14屆運(yùn)動(dòng)會(huì)(2010•莆田)開(kāi)幕式上,主會(huì)場(chǎng)中央有一塊邊長(zhǎng)為a米的正方形地面全彩LED顯示屏如圖所示,點(diǎn)E、F分雖為BC、CD邊上異于點(diǎn)C的動(dòng)點(diǎn),現(xiàn)在頂點(diǎn)A處有視角∠EAF設(shè)置為45°的攝像機(jī),正錄制形如△ECF的移動(dòng)區(qū)域內(nèi)表演的某個(gè)文藝節(jié)目,設(shè)DF=x米,BE=y米.
(Ⅰ)試將y表示為x的函數(shù);
(Ⅱ)求證:△ECF周長(zhǎng)p為定值;精英家教網(wǎng)
(Ⅲ)求△ECF面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省名校高三上學(xué)期第一次大聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

有一塊邊長(zhǎng)為4米的正方形鋼板,現(xiàn)對(duì)其進(jìn)行切割,焊接成一個(gè)長(zhǎng)方體無(wú)蓋容器(切、焊損耗忽略不計(jì)),有人用數(shù)學(xué)知識(shí)作了如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)小正方形,剩余部分圍成長(zhǎng)方體。

(Ⅰ)求這種切割、焊接而成的長(zhǎng)方體的最大容積.

(Ⅱ)請(qǐng)問(wèn):能重新設(shè)計(jì),使所得長(zhǎng)方體的容器的容積嗎?若能、給出你的一種設(shè)計(jì)方案。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年福建省莆田市高三質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在福建省第14屆運(yùn)動(dòng)會(huì)開(kāi)幕式上,主會(huì)場(chǎng)中央有一塊邊長(zhǎng)為a米的正方形地面全彩LED顯示屏如圖所示,點(diǎn)E、F分雖為BC、CD邊上異于點(diǎn)C的動(dòng)點(diǎn),現(xiàn)在頂點(diǎn)A處有視角∠EAF設(shè)置為45°的攝像機(jī),正錄制形如△ECF的移動(dòng)區(qū)域內(nèi)表演的某個(gè)文藝節(jié)目,設(shè)DF=x米,BE=y米.
(Ⅰ)試將y表示為x的函數(shù);
(Ⅱ)求證:△ECF周長(zhǎng)p為定值;
(Ⅲ)求△ECF面積S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案