【題目】已知極坐標系的極點在直角坐標系的原點處,極軸與x軸非負半軸重合,直線的極坐標方程為,圓C的參數(shù)方程為,

(1)求直線被圓C所截得的弦長;

(2)已知點,過點的直線與圓所相交于不同的兩點,求

【答案】(1)(2)4

【解析】分析:(1)首先將圓的方程化為直角坐標方程,利用點到直線距離公式求得圓心到直線的距離,最后利用弦長公式求解弦長即可;

(2)聯(lián)立直線的參數(shù)方程與圓的直角坐標方程,結合韋達定理和直線參數(shù)的幾何意義即可求得最終結果.

詳解:(1)將圓C的參數(shù)方程化為直角坐標系方程:

化為標準方程是,直線

,所以圓心,半徑;

所以圓心C到直線的距離是

直線被圓C所截得的弦長為

(2)設直線的參數(shù)方程為,

將其帶入圓的方程得:

化簡得:,所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓 的離心率為 ,頂點為A1、A2、B1、B2 , 且

(1)求橢圓C的方程;
(2)P是橢圓C上除頂點外的任意點,直線B2P交x軸于點Q,直線A1B2交A2P于點E.設A2P的斜率為k,EQ的斜率為m,試問2m﹣k是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是邊長為2的等邊三角形,PC= ,M在PC上,且PA∥面BDM.
(1)求直線PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.

)證明: BC1//平面A1CD;

)設AA1= AC=CB=2,AB=2,求三棱錐CA1DE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于點F,若BF=FC=3,DF=FE=2.

(1)求證:ADAB=AEAC;
(2)求線段BC的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在2012年的自主招生考試成績中隨機抽取名中學生的筆試成績,按成績分組,得到的頻率分布表如表所示.

組號

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請先求出頻率分布表中位置的相應數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第組中用分層抽樣抽取名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試;

(3)在(2)的前提下,學校決定在名學生中隨機抽取名學生接受考官進行面試,求:第組至少有一名學生被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且 ,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2

(1)證明:AG∥平面BDE;
(2)求平面BDE和平面BAG所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用長度分別為的四根木條圍成一個平面四邊形,則該平面四邊形面積的最大值是____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次抽樣調查中測得樣本的6組數(shù)據(jù),得到一個變量關于的回歸方程模型,其對應的數(shù)值如下表:

2

3

4

5

6

7

(1)請用相關系數(shù)加以說明之間存在線性相關關系(當時,說明之間具有線性相關關系);

(2)根據(jù)(1)的判斷結果,建立關于的回歸方程并預測當時,對應的值為多少(精確到).

附參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:

,,相關系數(shù)公式為:.

參考數(shù)據(jù):

,,.

查看答案和解析>>

同步練習冊答案