(本題12分)已知,
⑴若,求方程的解;
⑵若關(guān)于的方程在上有兩個解,求的取值范圍,
并證明:
解:(1)當(dāng)k=2時, ----1分
① 當(dāng),即或時,方程化為
解得,因為,舍去,
所以. ----3分
②當(dāng),即時,方程化為
解得 -----4分
由①②得當(dāng)k=2時,方程的解為或.---5分
⑵不妨設(shè)0<<<2,
因為
所以在(0,1]是單調(diào)函數(shù),故在(0,1]上至多一個解,
若1<<<2,則<0,故不符題意,因此0<≤1<<2.--7分
由得, 所以;
由得, 所以; -----9分
故當(dāng)時,方程在(0,2)上有兩個解. -----10分
因為0<≤1<<2,所以,
消去k 得 -----11分
即
因為x2<2,所以. -----14分
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題12分)已知函數(shù)的圖像關(guān)于原點對稱,并且當(dāng)時,,試求在上的表達式,并畫出它的圖像,根據(jù)圖像寫出它的單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省高一上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
(本題12分)已知函數(shù)(1)求的定義域;(2)求的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年寧夏高三第一次月考理科數(shù)學(xué)卷 題型:解答題
(本題12分)
已知函數(shù)
(1)證明:函數(shù)關(guān)于點對稱.
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年浙江省杭州市七校高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
(本題12分)已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間;
(2)當(dāng)時,在上恒大于0,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:陜西省2009-2010學(xué)年度第二學(xué)期期末考試高二數(shù)學(xué)(文科)試題 題型:解答題
(本題12分)已知關(guān)于的不等式,其中.
(Ⅰ)當(dāng)變化時,試求不等式的解集 ;
(Ⅱ)對于不等式的解集,若滿足(其中為整數(shù)集). 試探究集合能否為有限集?若能,求出使得集合中元素個數(shù)最少的的所有取值,并用列舉法表示集合;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com