【題目】一個四位數(shù)的各位數(shù)碼都是非零的偶數(shù),且它的算術(shù)平方根恰是一個二位數(shù),該二位數(shù)的兩個數(shù)碼也都是非零偶數(shù). 則這個四位數(shù)是______.

【答案】4624

【解析】

這樣的四位數(shù)ABCD,顯然是個偶數(shù),但它又不能只含有一個因數(shù)2(否則開方不盡).

至少含有2個因數(shù)2,也就是被4整除.則末2位被4整除.

設其根為:10×M+N,其中為非零偶數(shù),

考慮最大和最小的滿足題意的數(shù),由于,

顯然M = 4、6、8

M = 4,N必須大于7,僅能為8,此時48=2304不合題意.

所以M = 68.

①當M = 6,

62 = 3844、64 = 4096、66 = 4356、68 = 4624,

68滿足題意.

②當M = 8

82 = 6724、84 = 7056、86 = 7396、88 = 7744,

綜上只有4624 = 68.這個四位數(shù)是4624.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】a >0,已知函數(shù) (x>0)

()討論函數(shù)的單調(diào)性;

()試判斷函數(shù)上是否有兩個零點,并說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三角形的面積為,其中,為三角形的邊長,為三角形內(nèi)切圓的半徑,則利用類比推理,可得出四面體的體積為( )

A.

B.

C. ,(為四面體的高)

D. ,(,分別為四面體的四個面的面積,為四面體內(nèi)切球的半徑)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)統(tǒng)計,某地區(qū)植被覆蓋面積公頃與當?shù)貧鉁叵陆档亩葦?shù)之間呈線性相關(guān)關(guān)系,對應數(shù)據(jù)如下:

公頃

20

40

60

80

3

4

4

5

請用最小二乘法求出y關(guān)于x的線性回歸方程;

根據(jù)中所求線性回歸方程,如果植被覆蓋面積為300公頃,那么下降的氣溫大約是多少?

參考公式:線性回歸方程;其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某年級教師年齡數(shù)據(jù)如下表:

年齡(歲)

人數(shù)(人)

22

1

28

2

29

3

30

5

31

4

32

3

40

2

合計

20

(1)求這20名教師年齡的眾數(shù)與極差;

(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名教師年齡的莖葉圖;

(3)現(xiàn)在要在年齡為29歲和31歲的教師中選2位教師參加學校有關(guān)會議,求所選的2位教師年齡不全相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,半圓C的極坐標方程為ρ=2cos θ,θ∈.

(1)求C的參數(shù)方程;

(2)設點D在C上,C在D處的切線與直線l:y=x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,確定D的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,討論函數(shù)的單調(diào)性;

(2)若不等式對于任意成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】孝感市旅游局為了了解雙峰山景點在大眾中的熟知度,從年齡在1565歲的人群中隨機抽取n人進行問卷調(diào)查,把這n人按年齡分成5組:第一組[15,25),第二組[25,35),第三組[35,45),第四組[45,55),第五組[55,65],得到的樣本的頻率分布直方圖如右:

調(diào)查問題是“雙峰山國家森林公園是幾A級旅游景點?”每組中回答正確的人數(shù)及回答正確的人數(shù)占本組的頻率的統(tǒng)計結(jié)果如下表.

組號

分組

回答正確的人數(shù)

回答正確的人數(shù)占本組的頻率

1

[15,25)

5

0.5

2

[25,35)

18

x

3

[35,45)

y

0.9

4

[45,55)

9

a

5

[55,65]

7

b

(1)分別求出n,xy的值;

(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人;

(3)(2)抽取的6人中隨機抽取2人,求所抽取的兩人來自不同年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.

(1)求C的方程;

(2)設直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.

查看答案和解析>>

同步練習冊答案