已知函數(shù)f(x)=ax+x2-xlna(a>0,a≠1).
(1)當(dāng)a>1時(shí),求證:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(2)若函數(shù)y=|f(x)-t|-1有三個(gè)零點(diǎn),求t的值;
(3)若存在x1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.
(1)見解析(2)t=2(3)∪[e,+∞)
審題引導(dǎo):本題考查函數(shù)與導(dǎo)數(shù)的綜合性質(zhì),函數(shù)模型并不復(fù)雜,(1)(2)兩問是很常規(guī)的,考查利用導(dǎo)數(shù)證明單調(diào)性,考查函數(shù)與方程的零點(diǎn)問題.第(3)問要將“若存在x1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1”轉(zhuǎn)化成|f(x)max-f(x)min|=f(x)max-f(x)min≥e-1成立,最后仍然是求值域問題,但在求值域過程中,問題設(shè)計(jì)比較巧妙,因?yàn)樵谶^程中還要構(gòu)造函數(shù)研究單調(diào)性來確定導(dǎo)函數(shù)的正負(fù).
規(guī)范解答:(1)證明:f′(x)=axlna+2x-lna=2x+(ax-1)·lna.(2分)
由于a>1,故當(dāng)x∈(0,+∞)時(shí),lna>0,ax-1>0,所以f′(x)>0.
故函數(shù)f(x)在(0,+∞)上單調(diào)遞增.(4分)
(2)解:當(dāng)a>0,a≠1時(shí),因?yàn)閒′(0)=0,且f′(x)在R上單調(diào)遞增,故f′(x)=0有唯一解x=0.(6分)所以x、f′(x)、f(x)的變化情況如下表所示:
x
(-∞,0)
0
(0,+∞)
f′(x)

0

f(x)
?
極小值
?
又函數(shù)y=|f(x)-t|-1有三個(gè)零點(diǎn),所以方程f(x)=t±1有三個(gè)根,而t+1>t-1,所以t-1=f(x)min=f(0)=1,解得t=2.(10分)
(3)解:因?yàn)榇嬖趚1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,所以當(dāng)x∈[-1,1]時(shí),|f(x)max-f(x)min|=f(x)max-f(x)min≥e-1.(12分)
由(2)知,f(x)在[-1,0]上遞減,在[0,1]上遞增,所以當(dāng)x∈[-1,1]時(shí),f(x)min=f(0)=1,f(x)max=max{f(-1),f(1)}.
而f(1)-f(-1)=(a+1-lna)-=a--2lna,
記g(t)=t--2lnt(t>0),因?yàn)間′(t)=1+≥0(當(dāng)且僅當(dāng)t=1時(shí)取等號(hào)),
所以g(t)=t--2lnt在t∈(0,+∞)上單調(diào)遞增,而g(1)=0,
所以當(dāng)t>1時(shí),g(t)>0;當(dāng)0<t<1時(shí),g(t)<0,
也就是當(dāng)a>1時(shí),f(1)>f(-1);當(dāng)0<a<1時(shí),f(1)<f(-1).(14分)
①當(dāng)a>1時(shí),由f(1)-f(0)≥e-1?a-lna≥e-1?a≥e,
②當(dāng)0<a<1時(shí),由f(-1)-f(0)≥e-1?+lna≥e-1?0<a≤,
綜上知,所求a的取值范圍為∪[e,+∞).(16分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)的圖像上,且過點(diǎn)的切線的斜率為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),等差數(shù)列的任一項(xiàng),其中中所有元素的最小數(shù),,求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)、為常數(shù)),在時(shí)取得極值.
(1)求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)數(shù)列滿足),,數(shù)列的前項(xiàng)和為
求證:,是自然對(duì)數(shù)的底).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象與的圖象關(guān)于直線對(duì)稱。
(Ⅰ)若直線的圖像相切, 求實(shí)數(shù)的值;
(Ⅱ)判斷曲線與曲線公共點(diǎn)的個(gè)數(shù).
(Ⅲ)設(shè),比較的大小, 并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,是常數(shù)),若對(duì)曲線上任意一點(diǎn)處的切線,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=ex-f(0)x+x2,則f′(1)=____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y=e-2x+1在點(diǎn)(0,2)處的切線與直線y=0和yx圍成的
三角形的面積為 (  ).
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為(  )
A.(-2,+∞)B.(0,+∞)
C.(1,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=sin x-cos x,則f等于 (  ).
A.0B.C.D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案