【題目】已知函數(shù).

1)若上存在單調(diào)遞增區(qū)間,求實數(shù)的取值范圍;

2)設,若,恒有成立,求的最小值.

【答案】12

【解析】

1)求導得到,根據(jù)題意得到上有解,則,計算得到答案.

2)設,,計算得到單調(diào)遞增,故,討論,,三種情況,得到的取值范圍為,設,根據(jù)函數(shù)的單調(diào)性得到答案.

1)由,得,

上存在單調(diào)遞增區(qū)間,可得上有解,

上有解,則,∴

的取值范圍為.

2)設,

.

,則

單調(diào)遞增,即上單調(diào)遞增 .

時,,上單調(diào)遞增,∴,不符合題意;

時,,上單調(diào)遞減,,符合題意;

時,由于為一個單調(diào)遞增的函數(shù),

,,

由零點存在性定理,必存在一個零點,使得,

從而上單調(diào)遞減,在上單調(diào)遞增,

因此只需,∴,∴,從而,

綜上,的取值范圍為,

因此.,則,

,則,∴上單調(diào)遞減,在上單調(diào)遞增,

從而,∴的最小值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點,直線交橢圓于不同的兩點,設線段的中點為

1求橢圓的方程;

2的面積為其中為坐標原點時,試問:在坐標平面上是否存在兩個定點,使得當直線運動時,為定值?若存在,求出點的坐標和定值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】劉徽是我國古代偉大的數(shù)學家,他的杰作《九章算術注》和《海島算經(jīng)》是我國最寶貴的數(shù)學遺產(chǎn)劉徽是世界上最早提出十進小數(shù)概念的人,他正確地提出了正負數(shù)的概念及其加減運算的規(guī)則.提出了割圓術,并用割圓術求出圓周率π3.14.劉徽在割圓術中提出的割之彌細,所失彌少,割之又割以至于不可割,則與圓合體而無所失矣被視為中國古代極限觀念的佳作.其中割圓術的第一步是求圓的內(nèi)接正六邊形的面積,第二步是求圓的內(nèi)接正十二邊形的面積,依此類推.若在圓內(nèi)隨機取一點,則該點取自該圓內(nèi)接正十二邊形的概率為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中,,點的中點,點為線段垂直平分線上的一點,且,固定邊,在平面內(nèi)移動頂點,使得的內(nèi)切圓始終與切于線段的中點,且、在直線的同側(cè),在移動過程中,當取得最小值時,的面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,且曲線關于直線對稱.

1)求;

2)若直線與曲線交于,,直線與曲線交于,,且的面積不超過,求直線的傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,,的中點.

(Ⅰ)求證:平面

(Ⅱ)若平面平面,異面直線所成角為60°,且是鈍角三角形,求二面角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù),),在極坐標系(與平面直角坐標系取相同的單位長度,以坐標原點為極點,軸正半軸為極軸)中,曲線的極坐標方程為.

1)若可,試判斷曲線的位置關系;

2)若曲線交于點,兩點,且,滿足.的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓,直線.為圓內(nèi)一點,弦過點,過點的垂線交于點.

1)若,求的面積;

2)判斷直線與圓的位置關系,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓.E為橢圓在第一象限內(nèi)一點,點F在橢圓上且與點E關于原點對稱,直線與橢圓交于A,B兩點,則點E,F到直線x+y-1=0的距離之和的最大值是________;此時四邊形AEBF的面積是________.

查看答案和解析>>

同步練習冊答案