平面內(nèi)動點到點的距離等于它到直線的距離,記點的軌跡為曲
(Ⅰ)求曲線的方程;
(Ⅱ)若點,,上的不同三點,且滿足.證明: 不可能為直角三角形.

(1)
(2)利用向量的關(guān)系式來得到坐標(biāo)關(guān)系式,然后借助于反證法來說明不成立。

解析試題分析:解法一:(Ⅰ)由條件可知,點到點的距離與到直線的距離相等, 所以點的軌跡是以為焦點,為準(zhǔn)線的拋物線,其方程為.   4分
(Ⅱ)假設(shè)是直角三角形,不失一般性,設(shè),
,,則由,
,
所以.          6分
因為,,,
所以.           8分
又因為,所以,,
所以.  ①
,
所以,即. ②   10分
由①,②得,所以. ③
因為
所以方程③無解,從而不可能是直角三角形.       12分
解法二:(Ⅰ)同解法一
(Ⅱ)設(shè),,,由
,.           6分
由條件的對稱性,欲證不是直角三角形,只需證明
當(dāng)軸時,,從而,
即點的坐標(biāo)為
由于點上,所以,即,
此時,,,則.    8分
當(dāng)軸不垂直時,
設(shè)直線的方程為:,代入
整理得:,則
,則直線的斜率為,同理可得:
,得,,
,可得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦點在軸上,離心率,且經(jīng)過點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)斜率為的直線與橢圓相交于兩點,求證:直線的傾斜角互補.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左焦點為F, 離心率為, 過點F且與x軸垂直的直線被橢圓截得的線段長為.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)A, B分別為橢圓的左右頂點, 過點F且斜率為k的直線與橢圓交于C, D兩點. 若, 求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的中心在原點,焦點在軸上,短軸長為,離心率為.
(I)求橢圓的方程;
(II) 為橢圓上滿足的面積為的任意兩點,為線段的中點,射線交橢圓與點,設(shè),求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過拋物線的焦點F作斜率分別為的兩條不同的直線,且,相交于點A,B,相交于點C,D。以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在的直線記為。
(I)若,證明;;
(II)若點M到直線的距離的最小值為,求拋物線E的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)分別是橢圓:的左、右焦點,過傾斜角為的直線 與該橢圓相交于P,兩點,且.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)點 滿足,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線的焦點在拋物線上.

(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;
(Ⅱ)過拋物線上的動點作拋物線的兩條切線、, 切點為、.若、的斜率乘積為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線為常數(shù)),為其焦點.

(1)寫出焦點的坐標(biāo);
(2)過點的直線與拋物線相交于兩點,且,求直線的斜率;
(3)若線段是過拋物線焦點的兩條動弦,且滿足,如圖所示.求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在坐標(biāo)原點,焦點在軸上,其左、右焦點分別為、,短軸長為,點在橢圓上,且滿足的周長為6.
(Ⅰ)求橢圓的方程;;
(Ⅱ)設(shè)過點的直線與橢圓相交于A、B兩點,試問在x軸上是否存在一個定點M使恒為定值?若存在求出該定值及點M的坐標(biāo),若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案