【題目】某工廠為提高生產效率,開展技術創(chuàng)新活動,提出了完成某項生產任務的兩種新的生產方式.為比較兩種生產方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產方式,第二組工人用第二種生產方式.根據(jù)工人完成生產任務的工作時間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產方式的效率更高?并說明理由;

(2)求40名工人完成生產任務所需時間的中位數(shù),并將完成生產任務所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:

超過

不超過

第一種生產方式

第二種生產方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認為兩種生產方式的效率有差異?

附:

【答案】(1)第二種生產方式的效率更高. 理由見解析

(2)80

(3)

【解析】分析:(1)計算兩種生產方式的平均時間即可。

(2)計算出中位數(shù),再由莖葉圖數(shù)據(jù)完成列聯(lián)表。

(3)由公式計算出,再與6.635比較可得結果。

詳解:(1)第二種生產方式的效率更高.

理由如下:

(i)由莖葉圖可知:用第一種生產方式的工人中,有75%的工人完成生產任務所需時間至少80分鐘,用第二種生產方式的工人中,有75%的工人完成生產任務所需時間至多79分鐘.因此第二種生產方式的效率更高.

(ii)由莖葉圖可知:用第一種生產方式的工人完成生產任務所需時間的中位數(shù)為85.5分鐘,用第二種生產方式的工人完成生產任務所需時間的中位數(shù)為73.5分鐘.因此第二種生產方式的效率更高.

(iii)由莖葉圖可知:用第一種生產方式的工人完成生產任務平均所需時間高于80分鐘;用第二種生產方式的工人完成生產任務平均所需時間低于80分鐘,因此第二種生產方式的效率更高.

(iv)由莖葉圖可知:用第一種生產方式的工人完成生產任務所需時間分布在莖8上的最多,關于莖8大致呈對稱分布;用第二種生產方式的工人完成生產任務所需時間分布在莖7上的最多,關于莖7大致呈對稱分布,又用兩種生產方式的工人完成生產任務所需時間分布的區(qū)間相同,故可以認為用第二種生產方式完成生產任務所需的時間比用第一種生產方式完成生產任務所需的時間更少,因此第二種生產方式的效率更高.學科*網(wǎng)

以上給出了4種理由,考生答出其中任意一種或其他合理理由均可得分.

(2)由莖葉圖知.

列聯(lián)表如下:

超過

不超過

第一種生產方式

15

5

第二種生產方式

5

15

(3)由于,所以有99%的把握認為兩種生產方式的效率有差異.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為利于分層教學,某學校根據(jù)學生的情況分成了A,B,C三類,經過一段時間的學習后在三類學生中分別隨機抽取了1個學生的5次考試成緞,其統(tǒng)計表如下:

A類

第x次

1

2

3

4

4

分數(shù)y(滿足150)

145

83

95

72

110

;

B類

第x次

1

2

3

4

4

分數(shù)y(滿足150)

85

93

90

76

101

;

C類

第x次

1

2

3

4

4

分數(shù)y(滿足150)

85

92

101

100

112

;

(1)經計算己知A,B的相關系數(shù)分別為,.,請計算出C學生的的相關系數(shù),并通過數(shù)據(jù)的分析回答抽到的哪類學生學習成績最穩(wěn)定;(結果保留兩位有效數(shù)字,越大認為成績越穩(wěn)定)

(2)利用(1)中成績最穩(wěn)定的學生的樣本數(shù)據(jù),已知線性回歸直線方程為,利用線性回歸直線方程預測該生第十次的成績.

附相關系數(shù),線性回歸直線方程,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校舉辦“中國詩詞大賽”活動,某班派出甲乙兩名選手同時參加比賽.大賽設有15個詩詞填空題,其中“唐詩”、“宋詞”和“毛澤東詩詞”各5個.每位選手從三類詩詞中各任選1個進行作答,3個全答對選手得3分,答對2個選手得2分,答對1個選手得1分,一個都沒答對選手得0分.已知“唐詩”、“宋詞”和“毛澤東詩詞”中甲能答對的題目個數(shù)依次為5,4,3,乙能答對的題目個數(shù)依此為4,5,4,假設每人各題答對與否互不影響,甲乙兩人答對與否也互不影響. 求:
(Ⅰ)甲乙兩人同時得到3分的概率;
(Ⅱ)甲乙兩人得分之和ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù))與的圖象上存在關于軸對稱的點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)有小學21所,中學14所,大學7所,現(xiàn)采取分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查。

I)求應從小學、中學、大學中分別抽取的學校數(shù)目。

II)若從抽取的6所學校中隨機抽取2所學校做進一步數(shù)據(jù)分析,

1)列出所有可能的抽取結果;

2)求抽取的2所學校均為小學的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側面為菱形,的中點為,且平面

(1)證明:

(2)若,,試畫出二面角的平面角,并求它的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 是正方形, 平面, .

(1)求證: 平面;

(2)求證: 平面;

(3)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩直線

1)求直線的交點的坐標;

2)求過交點,且在兩坐標軸截距相等的直線方程;

3)若直線不能構成三角形,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點.
(Ⅰ)證明:CE∥平面PAB;
(Ⅱ)求直線CE與平面PBC所成角的正弦值.

查看答案和解析>>

同步練習冊答案