設(shè)函數(shù),其中.
(1)若,求的最小值;
(2)如果在定義域內(nèi)既有極大值又有極小值,求實數(shù)的取值范圍;
(3)是否存在最小的正整數(shù),使得當時,不等式恒成立.
(1); (2);(3) 存在最小的正整數(shù),使得當時,不等式恒成立.

試題分析:(1) 由題意易知,()得舍去)
所以當時,單調(diào)遞減;當時,單調(diào)遞增,則
(2)由在定義域內(nèi)既有極大值又有極小值可轉(zhuǎn)化為的導(dǎo)函數(shù)有兩個不等實根,即有兩個不等實根,可求出的范圍.
(3) 由不等式,令即可構(gòu)造函數(shù),再利用導(dǎo)數(shù)證明即可.
試題解析:(1)由題意知,的定義域為,當時,由,得舍去),當時,,當時,,所以當時,單調(diào)遞減;當時,單調(diào)遞增,

(2)由題意有兩個不等實根,即有兩個不等實根,設(shè),又對稱軸,則,解得
(3)對于函數(shù),令函數(shù),則,,所以函數(shù)上單調(diào)遞增,又時,恒有,即恒成立.取,則有恒成立.顯然,存在最小的正整數(shù),使得當時,不等式恒成立.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù) .
(Ⅰ)若函數(shù)在區(qū)間其中上存在極值,求實數(shù)的取值范圍;
(Ⅱ)如果當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù),
(1)當時,函數(shù)取得極值,求的值;
(2)當時,求函數(shù)在區(qū)間[1,2]上的最大值;
(3)當時,關(guān)于的方程有唯一實數(shù)解,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知x=1是函數(shù)的一個極值點,
(Ⅰ)求a的值;
(Ⅱ)當時,證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數(shù).
(1)試確定a,b的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),為自然對數(shù)的底,
(1)求的最值;
(2)若關(guān)于方程有兩個不同解,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法不正確的是(     )
A.方程有實數(shù)根函數(shù)有零點
B.函數(shù)有兩個零點
C.單調(diào)函數(shù)至多有一個零點
D.函數(shù)在區(qū)間上滿足,則函數(shù)在區(qū)間內(nèi)有零點

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)的定義域為,部分對應(yīng)值如下表, 的導(dǎo)函數(shù)的圖象如圖所示.下列關(guān)于的命題:

①函數(shù)的極大值點為,
②函數(shù)上是減函數(shù);
③如果當時,的最大值是2,那么的最大值為4;
④當時,函數(shù)個零點;
⑤函數(shù)的零點個數(shù)可能為0、1、2、3、4個.
其中正確命題的序號是                           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,其中,如果存在實數(shù),使,則的值為(   )
A.必為正數(shù)B.必為負數(shù)C.必為非負D.必為非正

查看答案和解析>>

同步練習冊答案