已知正數(shù)x,y,z滿足5x+4y+3z=10.
(1)求證:++≥5.
(2)求+的最小值.
(1)見解析 (2) 18
【解析】(1)根據(jù)柯西不等式,得
[(4y+3z)+(3z+5x)+(5x+4y)](++)≥(5x+4y+3z)2,
當(dāng)且僅當(dāng)==,
即x=,y=,z=時取等號.
因為5x+4y+3z=10,
所以++≥=5.
(2)根據(jù)平均值不等式,得
+≥2=2·,
當(dāng)且僅當(dāng)x2=y2+z2時,等號成立.
根據(jù)柯西不等式,得
(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,
即x2+y2+z2≥2,當(dāng)且僅當(dāng)==時,
等號成立.
綜上,+≥2·32=18.
當(dāng)且僅當(dāng)x=1,y=,z=時,等號成立.
所以+的最小值為18.
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)六十二第九章第三節(jié)練習(xí)卷(解析版) 題型:填空題
由正整數(shù)組成的一組數(shù)據(jù)x1,x2,x3, x4,其平均數(shù)和中位數(shù)都是2,且標準差等于1,則這組數(shù)據(jù)為 .(從小到大排列)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)六十七第十章第四節(jié)練習(xí)卷(解析版) 題型:選擇題
擲一顆質(zhì)地均勻的骰子,觀察所得的點數(shù)a,設(shè)事件A=“a為3”,B=“a為4”,C=“a為奇數(shù)”,則下列結(jié)論正確的是( )
(A)A與B為互斥事件
(B)A與B為對立事件
(C)A與C為對立事件
(D)A與C為互斥事件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)八十選修4-5第二節(jié)練習(xí)卷(解析版) 題型:解答題
已知f(x)=,n∈N*,試比較f()與的大小,并且說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)八十選修4-5第二節(jié)練習(xí)卷(解析版) 題型:解答題
若a,b,c為不全相等的正數(shù),求證:lg+lg+lg>lga+lgb+lgc.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)八十一選修4-5第三節(jié)練習(xí)卷(解析版) 題型:解答題
已知a2+2b2+3c2=6,若存在實數(shù)a,b,c,使得不等式a+2b+3c>|x+1|成立,求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十第八章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
直線l1:x+3y-7=0,l2:kx-y-2=0與x軸的正半軸及y軸的正半軸所圍成的四邊形有外接圓,則k的值為( )
(A)-3 (B)3 (C)1 (D)2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十四第八章第五節(jié)練習(xí)卷(解析版) 題型:選擇題
以F1(-1,0),F2(1,0)為焦點且與直線x-y+3=0有公共點的橢圓中,離心率最大的橢圓方程是( )
(A)+=1 (B)+=1
(C)+=1 (D)+=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十五第八章第六節(jié)練習(xí)卷(解析版) 題型:選擇題
如圖,中心均為原點O的雙曲線與橢圓有公共焦點,M, N是雙曲線的兩頂點,若M,O,N將橢圓長軸四等分,則雙曲線與橢圓的離心率的比值是( )
(A)3 (B)2 (C) (D)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com