已知橢圓
x2
10-4
+
y2
4-2
=1
,焦點(diǎn)在y軸上,若焦距等于4,則實(shí)數(shù)4=______.
將橢圓的方程轉(zhuǎn)化為標(biāo)準(zhǔn)形式為
y2
(
k-2
)
2
+
x2
(
90-k
)
2
=9
,
顯然k-2>90-k,即k>6,
(
k-2
)
2
-(
90-k
)
2
=22
,解得k=8
故答案為:8.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)已知橢圓為常數(shù),且,過(guò)點(diǎn)且以向量為方向向量的直線與橢圓交于點(diǎn),直線交橢圓于點(diǎn) (為坐標(biāo)原點(diǎn)).(1)的面積的表達(dá)式;(2)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1、F2是兩定點(diǎn),|F1F2|=4,動(dòng)點(diǎn)M滿足|MF1|+|MF2|=4,則動(dòng)點(diǎn)M的軌跡是(  )
A..橢圓B.直線C.圓D.線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求下列圓錐曲線的標(biāo)準(zhǔn)方程
(1)以雙曲線
y2
2
-x2=1
的頂點(diǎn)為焦點(diǎn),離心率e=
2
2
的橢圓
(2)準(zhǔn)線為x=
4
3
,且a+c=5的雙曲線
(3)焦點(diǎn)在y軸上,焦點(diǎn)到原點(diǎn)的距離為2的拋物線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求適合下列條件的曲線的標(biāo)準(zhǔn)方程:
(1)a=3b,經(jīng)過(guò)點(diǎn)M(3,0)的橢圓;
(2)a=2
5
,經(jīng)過(guò)點(diǎn)N(2,-5),焦點(diǎn)在y軸上的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)F1,F(xiàn)2是橢圓E:
x2
a2
+2y2=1
a>
2
2
)的左右焦點(diǎn),過(guò)F1的直線l與E相交于A、B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列
(1)求|AB|;
(2)若直線l的斜率為1,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)過(guò),M(2,
2
),N(
6
,1)兩點(diǎn),求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1的焦點(diǎn)坐標(biāo)為(±1,0),橢圓經(jīng)過(guò)點(diǎn)(1,
2
2

(1)求橢圓方程;
(2)過(guò)橢圓左頂點(diǎn)M(-a,0)與直線x=a上點(diǎn)N的直線交橢圓于點(diǎn)P,求
OP
ON
的值.
(3)過(guò)右焦點(diǎn)且不與對(duì)稱軸平行的直線l交橢圓于A、B兩點(diǎn),點(diǎn)Q(2,t),若KQA+KQB=2與l的斜率無(wú)關(guān),求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓與橢圓具有相同的(      )
A.長(zhǎng)軸長(zhǎng)B.離心率C.頂點(diǎn)D.焦點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案