(本題滿分14分)某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?
解:(1)當(dāng)每輛車的月租金定為3600元時(shí),未租出的車輛數(shù)為: =12,所以這時(shí)租出了88輛車………………………………………………………………………..…4分
(2)設(shè)每輛車的月租金定為x元,則租賃公司的月收益為:
f(x)=(100-)(x-150)-×50,…………….…….……....10分
整理得f(x)=-+162x-21000=-(x-4050)2+307050……………………...12分
所以,當(dāng)x=4050時(shí),f(x)最大,其最大值為f(4050)=307050.
即當(dāng)每輛車月租金定為4050元時(shí),租賃公司月收益最大,最大收益為307050元.………..14分
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(理數(shù))(12分)某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù),已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克
(Ⅰ) 求的值;
(Ⅱ) 若該商品的成品為3元/千克, 試確定銷售價(jià)格的值,使商場每日銷售該商品所獲得的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為實(shí)數(shù),,),
(1)若,且函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4e/c7/4e0c766e6e2cc08cd346da50b7498332.gif" style="vertical-align:middle;" />,求的表達(dá)式;
(2)在(1)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)設(shè),,,且函數(shù)為偶函數(shù),判斷是否大于?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)某經(jīng)銷商用一輛J型卡車將某種水果從果園運(yùn)送(滿載)到相距400km的水果批發(fā)市場.據(jù)測算,J型卡車滿載行駛時(shí),每100km所消耗的燃油量u(單位:
資、車損等其他費(fèi)用平均每小時(shí)300元.已知燃油價(jià)格為每升(L)7.5元.
(1)設(shè)運(yùn)送這車水果的費(fèi)用為y(元)(不計(jì)返程費(fèi)用),將y表示成速度v的函數(shù)關(guān)系式;
(2)卡車該以怎樣的速度行駛,才能使運(yùn)送這車水果的費(fèi)用最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知二次函數(shù)的圖像經(jīng)過坐標(biāo)原點(diǎn),且滿足,設(shè)函數(shù),其中m為常數(shù)且。
(1)求函數(shù)的解析式;
(2)判斷函數(shù)的單調(diào)性并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題11分)如圖,矩形ABCD中,AB=6,BC=2,點(diǎn)O是AB的中點(diǎn),點(diǎn)P在AB的延長線上,且BP=3.一動(dòng)點(diǎn)E從O點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度沿OA勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后,立即以原速度沿AO返回;另一動(dòng)點(diǎn)F從P點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度沿射線PA勻速運(yùn)動(dòng),點(diǎn)E、F同時(shí)出發(fā),當(dāng)兩點(diǎn)相遇時(shí)停止運(yùn)動(dòng),在點(diǎn)E、F的運(yùn)動(dòng)過程中,以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側(cè).設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t≥0).
(1)當(dāng)?shù)冗叀鱁FG的邊FG恰好經(jīng)過點(diǎn)C時(shí),求運(yùn)動(dòng)時(shí)間t的值;
(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)等邊△EFG和矩形ABCD重疊部分的面積為S,求出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)的圖象與x軸有兩個(gè)不同的公共點(diǎn),且,當(dāng)時(shí),恒有.
(1)當(dāng)時(shí),求不等式的解集;
(2)若以二次函數(shù)的圖象與坐標(biāo)軸的三個(gè)交點(diǎn)為頂點(diǎn)的三角形的面積為8,且,求a的值;
(3)若,且對所有恒成立,求正實(shí)數(shù)m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
曲線f(x)=x3+x﹣2在p0處的切線平行于直線y=4x﹣1,則p0的坐標(biāo)為( )
A.(1,0) | B.(2,8) |
C.(1,0)或(﹣1,﹣4) | D.(2,8)或(﹣1,﹣4) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com