已知直線為參數(shù)), 曲線 (為參數(shù)).
(1)設(shè)相交于兩點(diǎn),求;
(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個動點(diǎn),求它到直線的距離的最小值.
(1);(2).

試題分析:本題考查直角坐標(biāo)系與極坐標(biāo)系之間的互化、參數(shù)方程的幾何意義、三角函數(shù)的值域、函數(shù)圖像的平移等基礎(chǔ)知識,考查學(xué)生的轉(zhuǎn)化能力和計算能力.第一問,由參數(shù)方程和普通方程的互化公式消參得出的普通方程,由于兩圖像相交,所以聯(lián)立求交點(diǎn),再利用兩點(diǎn)間距離公式求;第二問,根據(jù)已知先得到曲線的參數(shù)方程,寫出點(diǎn)P的坐標(biāo),利用點(diǎn)到直線的距離公式求距離,再利用三角函數(shù)的有界性求函數(shù)的最值.
試題解析:(1)的普通方程為的普通方程為
聯(lián)立方程組解得的交點(diǎn)為,,
.
(2)的參數(shù)方程為為參數(shù)).故點(diǎn)的坐標(biāo)是,
從而點(diǎn)到直線的距離是,
由此當(dāng)時,取得最小值,且最小值為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知直線的參數(shù)方程是(為參數(shù));以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為.
(1)寫出直線的普通方程與圓的直角坐標(biāo)方程;
(2)由直線上的點(diǎn)向圓引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)過原點(diǎn)的直線與圓的一個交點(diǎn)為,點(diǎn)為線段的中點(diǎn)。
(1)求圓的極坐標(biāo)方程;
(2)求點(diǎn)軌跡的極坐標(biāo)方程,并說明它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線l的參數(shù)方程:(t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2sin(θ+),判斷直線和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,已知圓的參數(shù)方程為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)直線,射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,圓ρ=2cos的垂直于極軸的兩條切線方程分別為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,曲線與曲線的一個交點(diǎn)在極軸上,則的值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

將下列各極坐標(biāo)方程化為直角坐標(biāo)方程.
(1)θ=(ρ∈R). (2)ρcos2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,過點(diǎn)且垂直于極軸的直線方程的極坐標(biāo)方程是           (請選擇正確標(biāo)號填空) (1) (2)。3) (4)

查看答案和解析>>

同步練習(xí)冊答案