已知圓O:x2+y2=4上有三個(gè)不同的點(diǎn)P、A、B,且滿足
AP
=x
OB
-
1
2
OA
(其中x>0),則實(shí)數(shù)x的取值范圍是(  )
A、(0,1)
B、[1,3]
C、[
1
2
3
2
]
D、[
3
2
,
5
2
]
分析:
AP
=x
OB
-
1
2
OA
可得x
OB
=
OP
-
1
2
OA
,兩邊平方得4x2=4+1-
OP
OA
,利用向量的數(shù)量積公式,即可求出實(shí)數(shù)x的取值范圍.
解答:解:∵
AP
=x
OB
-
1
2
OA
,
OP
-
OA
=x
OB
-
1
2
OA
,
∴x
OB
=
OP
-
1
2
OA
,
兩邊平方得4x2=4+1-
OP
OA
,
設(shè)
OP
OA
的夾角為α,則4x2=5-4cosα,
∵-1≤cosα≤1,
∴1≤5-4cosα≤9,
∴1≤4x2≤9,
∵x>0,
1
2
≤x≤
3
2
,
故選:C.
點(diǎn)評:本題主要考查圓的定義及向量的模及其數(shù)量積運(yùn)算,還考查了向量與實(shí)數(shù)的轉(zhuǎn)化.在向量的加,減,數(shù)乘和數(shù)量積運(yùn)算中,數(shù)量積的結(jié)果是實(shí)數(shù),所以考查應(yīng)用較多.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長軸,離心率為
2
2
的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連接PF,過原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓o:x2+y2=b2與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)A(0,1),F(xiàn)為橢圓的左焦點(diǎn),直線AF被圓所截得的弦長為1.
(1)求橢圓方程.
(2)圓o與x軸的兩個(gè)交點(diǎn)為C、D,B( x0,y0)是橢圓上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),在線段CD上是否存在點(diǎn)T(t,0),使|BT|=|AT|,若存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=9,定點(diǎn) A(6,0),直線l:3x-4y-25=0
(1)若P為圓O上動(dòng)點(diǎn),求線段PA的中點(diǎn)M的軌跡方程
(2)設(shè)E、F分別是圓O和直線l上任意一點(diǎn),求線段EF的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)已知圓O:x2+y2=r2,點(diǎn)P(a,b)(ab≠0)是圓O內(nèi)一點(diǎn),過點(diǎn)P的圓O的最短弦所在的直線為l1,直線l2的方程為ax+by+r2=0,那么( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=1,點(diǎn)P在直線x=
3
上,O為坐標(biāo)原點(diǎn),若圓O上存在點(diǎn)Q,使∠OPQ=30°,則點(diǎn)P的縱坐標(biāo)y0的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊答案