連結(jié)球面上兩點(diǎn)的線段稱為球的弦.半徑為4的球的兩條弦的長(zhǎng)度分別等于分別為的中點(diǎn),每條弦的兩端都在球面上運(yùn)動(dòng),有下列四個(gè)結(jié)論:
①弦可能相交于點(diǎn);②弦可能相交于點(diǎn)
的最大值為5;     ④的最小值為1.
其中正確結(jié)論的個(gè)數(shù)為(   )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
C
解:因?yàn)橹睆绞?,則①③④正確;②錯(cuò)誤.易求得M、N到球心O的距離分別為3、2,若兩弦交于N,則OM⊥MN,Rt△OMN中,有OM<ON,矛盾.當(dāng)M、O、N共線時(shí)分別取最大值5最小值1.故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題8分)
如圖,點(diǎn)為斜三棱柱的側(cè)棱上一點(diǎn),于點(diǎn)于點(diǎn).

(1) 求證:;
(2) 在任意中有余弦定理:. 拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個(gè)側(cè)面面積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式(只寫結(jié)論,不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,,,點(diǎn)、、分別為、的中點(diǎn).

(1)求直線與平面所成角的正弦值;
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正三棱柱中,已知在棱上,且,若與平面所成的角為,則      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n為兩條直線,α,β為兩個(gè)平面,則下列四個(gè)命題中,正確的命題是(  )
A.若m?α,n?α,且m∥β,n∥β,則α∥β
B.若m∥α,m∥n,則n∥α
C.若m∥α,n∥α,則m∥n
D.若m,n為兩條異面直線,且m∥α,n∥α,m∥β,n∥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若長(zhǎng)方體的一個(gè)頂點(diǎn)上的三條棱的長(zhǎng)分別為,從長(zhǎng)方體的一條對(duì)角線的一個(gè)
端點(diǎn)出發(fā),沿表面運(yùn)動(dòng)到另一個(gè)端點(diǎn),其最短路程是______________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖, 在空間四邊形SABC中, 平面ABC, , 于N, 于M.

求證:①AN^BC;  ②平面SAC^平面ANM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)正方體的頂點(diǎn)都在球面上,它的棱長(zhǎng)為2cm,則球的表面積是(   )
A.8cm B.12cm2   
C.16cm2  D.20cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
(如右圖) 在正方體ABCD-A1B1C1D1中,

(1)證明:平面AB1D1∥平面BDC1
(2)設(shè)M為A1D1的中點(diǎn),求直線BM與平面BB1D1D所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案