【題目】設(shè)橢圓的中心在坐標(biāo)原點,其中一個焦點為圓的圓心,右頂點是圓與軸的一個交點.已知橢圓與直線相交于、兩點,延長與橢圓交于點.
(1)求橢圓的方程;
(2)求面積的最大值.
【答案】(1)(2)3
【解析】
(1)求出圓心,以及與軸的的交點(圓心右側(cè)),為橢圓的右頂點,即可求出橢圓方程;
(2)根據(jù)橢圓的對稱性,設(shè),直線過,,橢圓方程與直線方程聯(lián)立,消去,得到關(guān)于的一元二次方程,利用韋達(dá)定理,求出關(guān)于為變量的函數(shù),運用換元法,結(jié)合求導(dǎo),求出函數(shù)的最值,即為面積的最大值.
(1)圓,化為,
圓心,與軸交點坐標(biāo),
右頂點為,所求的橢圓方程為.
(2)設(shè),,
由得,.
,
,
令,則,,
,
設(shè),恒成立,
單調(diào)遞增,當(dāng)時,取得最小值,
此時取得最大值為3.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A是橢圓的上頂點,斜率為的直線交橢圓E于A、M兩點,點N在橢圓E上,且.
(1)當(dāng)時,求的面積;
(2)當(dāng)時,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓:的左,右焦應(yīng)分別是,,離心率為,過且垂直于軸的直線被橢圓截得的線段長為1.
(1)求橢圓的方程;
(2)已知直線:與橢圓切于點,直線平行于,與橢圓交于不同的兩點、,且與直線交于點.證明:存在常數(shù),使得,并求的值;
(3)點是橢圓上除長軸端點外的任一點,連接,,設(shè)后的角平分線交的長軸于點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若曲線與在點處有相同的切線,求函數(shù)的極值;
(2)若,討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四個點,,,中有3個點在橢圓:上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過原點的直線與橢圓交于,兩點(,不是橢圓的頂點),點在橢圓上,且,直線與軸、軸分別交于、兩點,設(shè)直線,的斜率分別為,,證明:存在常數(shù)使得,并求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若射線 與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD是直角梯形,側(cè)棱底面ABCD,AB垂直于AD和BC,,且.M是棱SB的中點.
(Ⅰ)求證:面SCD;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)點N是直線CD上的動點,MN與面SAB所成的角為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,,且的最小值為,的圖像的相鄰兩條對稱軸之間的距離為.
(1)求函數(shù)的解析式和單調(diào)遞增區(qū)間;
(2)在中,角,,所對的邊分別為,,.且,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集I={1,2,3,4,5,6},集合A,B都是I的子集,若AB={1,3,5},則稱A,B為“理想配集”,記作(A,B),問這樣的“理想配集”(A,B)共有( )
A. 7個 B. 8個 C. 27個 D. 28個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com