已知:函數(shù)f(x)=x2+4x+3 (x∈R),g(x)與f(x)圖象關(guān)于直線x=1對(duì)稱.
(1)求g(x);
(2)如果關(guān)于x的不等式 g(x)≥g(a)-4的解集為全體實(shí)數(shù),求a的最大值.

解:(1)設(shè)P(x,y)為y=g(x)上任一點(diǎn),(1分)
∵y=g(x)與y=f(x)關(guān)于x=1對(duì)稱,
∴P(x,y)關(guān)于x=1的對(duì)稱點(diǎn)P′(2-x,y)在y=f(x)的圖象上,(3分)
∵f(x)=x2+4x+3
∴y=(2-x)2+(2-x)+3=x2-8x+15
即g(x)=x2-8x+15(2分)
(2)解法一:由關(guān)于x的不等式 g(x)≥g(a)-4的解集為全體實(shí)數(shù),
又因?yàn)間(x)的最小值為-1(2分)
即:g(a)-4≤-1(3分)
a2-8a+15-4≤-1
a2-8a+12≤0
2≤a≤6(2分)
a的最大值6(1分)
解法二:由g(x)≥g(a)-4
得:x2-8x+15≥a2-8a+15-4(1分)
x2-8x-(a2-8a-4)≥0(1分)
因?yàn)椴坏仁降慕饧癁槿w實(shí)數(shù)
即:△=64-4(a2-8a-4)≤0(3分)
a2-8a+12≤0(1分)
2≤a≤6(1分)
a的最大值6(1分)
分析:(1)設(shè)P(x,y)為y=g(x)上任一點(diǎn),由已知中g(shù)(x)與f(x)圖象關(guān)于直線x=1對(duì)稱,可得P(x,y)關(guān)于x=1的對(duì)稱點(diǎn)P′(2-x,y)在y=f(x)的圖象上,滿足y=f(x)的解析式,代入整理即可得到函數(shù)g(x)的解析式
(2)解法一:由(1)中結(jié)論,我們g(x)的最小值為-1,故可由g(x)≥g(a)-4的解集為全體實(shí)數(shù),構(gòu)造出一個(gè)關(guān)于a的不等式g(a)-4≤-1,解不等式即可得到答案;
解法二:由關(guān)于x的不等式 g(x)≥g(a)-4的解集為全體實(shí)數(shù),根據(jù)二次不等式恒成立的充要條件,我們可以構(gòu)造一個(gè)關(guān)于a的不等式,解不等式即可得a的最大值.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二次函數(shù)的性質(zhì),函數(shù)解析式的求解及常用方法,函數(shù)恒成立問(wèn)題,其中(1)中坐標(biāo)法,求曲線的軌跡方程時(shí),最常用的方法,一定要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)在(-∞,0)∪(0,+∞)上有意義,且在(0,+∞)上是減函數(shù),f(1)=0,又有函數(shù)g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)椋?1,1),當(dāng)x∈(0,1)時(shí),f(x)=
2x2x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=xa的圖象過(guò)點(diǎn)(
1
2
,
2
2
)
,則f(x)在(0,+∞)單調(diào)遞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)在區(qū)間(a,b)上是減函數(shù),證明f(x)在區(qū)間(-b,-a)上仍是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:函數(shù)f(x)=x3-6x2+3x+t,t∈R.
(1)①證明:a3-b3=(a-b)(a2+ab+b2
②求函數(shù)f(x)兩個(gè)極值點(diǎn)所對(duì)應(yīng)的圖象上兩點(diǎn)之間的距離;
(2)設(shè)函數(shù)g(x)=exf(x)有三個(gè)不同的極值點(diǎn),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案