(08年銀川一中一模文) (12分)如圖,在底面是正方形的四棱錐P―ABCD中,PA=AC=2,PB=PD=

   (1)證明PA⊥平面ABCD;

   (2)已知點(diǎn)E在PD上,且PE:ED=2:1,點(diǎn)F為棱PC的中點(diǎn),證明BF//平面AEC。

   (3)求四面體FACD的體積;

 

解析:證明:(I)因?yàn)樵谡叫蜛BCD中,AC=2 ∴AB=AD=

可得:在△PAB中,PA2+AB2=PB2=6。

所以PA⊥AB

同理可證PA⊥AD

故PA⊥平面ABCD (4分)

   (II)取PE中點(diǎn)M,連接FM,BM,

連接BD交AC于O,連接OE

∵F,M分別是PC,PF的中點(diǎn),

∴FM∥CE,

又FM面AEC,CE面AEC

∴FM∥面AEC

又E是DM的中點(diǎn)

OE∥BM,OE面AEC,BM面AEC

∴BM∥面AEC且BM∩FM=M

∴平面BFM∥平面ACE

又BF平面BFM,∴BF∥平面ACE (4分)

   (3)連接FO,則FO∥PA,因?yàn)镻A⊥平面ABCD,則FO⊥平面ABCD,所以FO=1,

SACD=1,

    ∴VFACD=VF――ACD=  (4分)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年銀川一中一模理)  (12分)如圖已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸是短軸的2倍且經(jīng)過點(diǎn)M(2,1),平行于OM的直線在y軸上的截距為m(m≠0),且交橢圓于A、B兩點(diǎn).

   (1)求橢圓的方程;

   (2)求m的取值范圍;

   (3)求證:直線MA、MB與x軸圍成一個等腰三角形。說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年銀川一中一模理)  (10分) 坐標(biāo)系與參數(shù)方程已知圓系的方程為

x2+y2-2axCos-2aySin=0(a>0)

   (1)求圓系圓心的軌跡方程;

   (2)證明圓心軌跡與動圓相交所得的公共弦長為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年銀川一中一模理)  設(shè)a≥0,b≥0,a≠b。求證:對于任意正數(shù)都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年銀川一中一模文)  (12分)已知橢圓過點(diǎn),且離心率。

   (1)求橢圓方程;

   (2)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過定點(diǎn),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案