下列關(guān)于函數(shù)f(x)=(2x-x2)ex的判斷正確的是
①f(x)>0的解集是{x|0<x<2};
②f(-)是極小值,f()是極大值;
③f(x)沒有最小值,也沒有最大值.
A.①③ B.①②C.②D.①②③
B
′(x)=ex(2-x2),由f′(x)=0得x=±,
由f′(x)<0得x> 或x<- ,
由f′(x)>0得- <x< ,
∴f(x)的單調(diào)減區(qū)間為(-∞,- ),( ,+∞).單調(diào)增區(qū)間為(-, ).
∴f(x)的極大值為f( ),極小值為f(- ),故③不正確.
∵x<- 2 時,f(x)<0恒成立.
∴f(x)無最小值,但有最大值f( )
∴②正確④不正確..
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題10分)已知函數(shù)
(1)利用函數(shù)單調(diào)性的定義,判斷函數(shù)上的單調(diào)性;
(2)若,求函數(shù)上的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知函數(shù).
(1)若是函數(shù)的極值點,求的值;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題共10分)已知函數(shù)。
(Ⅰ)若曲線處的切線與直線垂直,求的值;
(Ⅱ)若函數(shù)在區(qū)間(,)內(nèi)是增函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于函數(shù),存在,使得成立,則實數(shù)的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.已知函數(shù). 
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù).是否存在實數(shù),使得?若存在,求實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x2(ax+b)在x=2時有極值(其中a,b∈R),其圖象在點(1,f(1))處的切線與直線3x+y=0平行,則函數(shù)f(x)的單調(diào)減區(qū)間為           (   )
A.(-∞,0)B.(0,2)C.(2,+∞) D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知函數(shù),
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)在區(qū)間內(nèi)至少存在一個實數(shù),使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分) 已知是函數(shù)的一個極值點.
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案