【題目】設函數(shù)f(x)=lnx﹣ ax2﹣bx
(1)當a=b= 時,求函數(shù)f(x)的單調區(qū)間;
(2)當a=0,b=﹣1時,方程f(x)=mx在區(qū)間[1,e2]內有唯一實數(shù)解,求實數(shù)m的取值范圍.
【答案】
(1)解:依題意,知f(x)的定義域為(0,+∞),
當a=b= 時,f(x)=lnx﹣ x2﹣ x,
∴f′(x)= ,
令f′(x)=0,解得:x=1或x=﹣2(舍去),經檢驗,x=1是方程的根.
當0<x<1時,f′(x)>0,當x>1時,f′(x)<0,
所以f(x)的單調遞增區(qū)間是(0,1),單調遞減區(qū)間是(1,+∞)
(2)解:當a=0,b=﹣1時,f(x)=lnx+x,
由f(x)=mx得mx=lnx+x,
又因為x>0,所以m=1+ ,
要使方程f(x)=mx在區(qū)間[1,e2]內有唯一實數(shù)解,
只需m=1+ 有唯一實數(shù)解,
令g(x)=1+ (x>0),∴g′(x)= (x>0),
由g′(x)>0,得:0<x<e,由g′(x)<0,得x>e,
所以g(x)在區(qū)間[1,e]上是增函數(shù),在區(qū)間[e,e2]上是減函數(shù),
g(1)=1+ =1,g(e2)=1+ =1+ ,
g(e)=1+ =1+ ,
所以m=1+ 或1≤m<1+
【解析】(1)將a,b的值代入,求出函數(shù)f(x)的表達式,導數(shù),從而求出函數(shù)的單調區(qū)間;(2)將a,b的值代入函數(shù)的表達式,問題轉化為只需m=1+ 有唯一實數(shù)解,求出函數(shù)y=g(x)=1+ 的單調性,從而求出m的范圍.
【考點精析】關于本題考查的利用導數(shù)研究函數(shù)的單調性,需要了解一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子米比賽中,中國選手武大靖以連續(xù)打破世界紀錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造了中國男子冰上競速項目在冬奧會金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運動員自出發(fā)點出發(fā)進入滑行階段后,每滑行一圈都要依次經過個直道與彎道的交接口.已知某男子速滑運動員順利通過每個交接口的概率均為,摔倒的概率均為.假定運動員只有在摔倒或到達終點時才停止滑行,現(xiàn)在用表示該運動員滑行最后一圈時在這一圈內已經順利通過的交接口數(shù).
(1)求該運動員停止滑行時恰好已順利通過個交接口的概率;
(2)求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓O:x2+y2=4,點F( ,0),以線段MF為直徑的圓內切于圓O,記點M的軌跡為C
(1)求曲線C的方程;
(2)若過F的直線l與曲線C交于A,B兩點,問:在x軸上是否存在點N,使得 為定值?若存在,求出點N坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是等差數(shù)列的前項和,且.
(1)求;
(2)令,計算和,由此推測數(shù)列是等差數(shù)列還是等比數(shù)列,證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面推理過程中使用了類比推理方法,其中推理正確的是( )
A. 平面內的三條直線,若,則.類比推出:空間中的三條直線,若,則
B. 平面內的三條直線,若,則.類比推出:空間中的三條向量,若,則
C. 在平面內,若兩個正三角形的邊長的比為,則它們的面積比為.類比推出:在空間中,若兩個正四面體的棱長的比為,則它們的體積比為
D. 若,則復數(shù).類比推理:“若,則”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項都是正數(shù)的數(shù)列{an}的前n項和為Sn , Sn=an2+ an , n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足:b1=1,bn﹣bn﹣1=2an(n≥2),求數(shù)列{ }的前n項和Tn
(3)若Tn≤λ(n+4)對任意n∈N*恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示,則函數(shù)f(x)的解析式為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種型號汽車四個輪胎半徑相同,均為R=40cm,同側前后兩輪胎之間的距離(指輪胎中心之間距離)為l=280cm (假定四個輪胎中心構成一個矩形).當該型號汽車開上一段上坡路ABC(如圖(1)所示,其中∠ABC=a( ),且前輪E已在BC段上時,后輪中心在F位置;若前輪中心到達G處時,后輪中心在H處(假定該汽車能順利駛上該上坡路).設前輪中心在E和G處時與地面的接觸點分別為S和T,且BS=60cm,ST=100cm.(其它因素忽略不計)
(1)如圖(2)所示,F(xiàn)H和GE的延長線交于點O,求證:OE=40cot (cm);
(2)當a= π時,后輪中心從F處移動到H處實際移動了多少厘米?(精確到1cm)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù).
(1)排成前后兩排,前排3人,后排4人;(2)全體站成一排,甲不站排頭也不站排尾;
(3)全體站成一排,女生必須站在一起;(4)全體站成一排,男生互不相鄰.(用數(shù)字作答)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com