【題目】已知向量,函數(shù)

1)求函數(shù)的最小正周期與圖象的對(duì)稱(chēng)軸方程;

2)若,,函數(shù)的最小值是,最大值是2,求實(shí)數(shù),的值.

【答案】1;(2)實(shí)數(shù)的值分別為2,

【解析】

1)先由向量的數(shù)量積及三角恒等變換求出函數(shù)的解析式,再根據(jù)正弦函數(shù)的圖象和性質(zhì),求出函數(shù)的最小正周期與圖象的對(duì)稱(chēng)軸方程即可;

2)先根據(jù)的取值范圍求出的取值范圍,然后根據(jù)正弦函數(shù)的圖象和性質(zhì)求出函數(shù)的最值,最后根據(jù)已知條件列出方程組,解之即可得實(shí)數(shù),的值.

1)由題意得

,

,

所以函數(shù)的最小正周期

,解得,

所以函數(shù)圖象的對(duì)稱(chēng)軸方程為,

2)因?yàn)?/span>,所以,

因?yàn)?/span>,

所以當(dāng),即時(shí),函數(shù)取得最小值,最小值為,即,

當(dāng),即時(shí),函數(shù)取得最大值,最大值為,即,

所以,

解得

故實(shí)數(shù),的值分別為2,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖過(guò)拋物線的焦點(diǎn)的直線依次交拋物線及準(zhǔn)線于點(diǎn),若,且,則

A.2B.C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)以的邊為長(zhǎng)軸且過(guò)點(diǎn)的橢圓的方程為橢圓的離心率,面積的最大值為,所在的直線分別與直線相交于點(diǎn),.

1)求橢圓的方程;

2)設(shè)的外接圓的面積分別為,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線方程為

1)求,;

2)函數(shù)圖像與軸負(fù)半軸的交點(diǎn)為,且在點(diǎn)處的切線方程為,函數(shù),,求的最小值;

3)關(guān)于的方程有兩個(gè)實(shí)數(shù)根,,且,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)號(hào)為1,2,3的三位小學(xué)生,在課余時(shí)間一起玩“擲骰子爬樓梯”游戲,規(guī)則如下:投擲一顆骰子,將每次出現(xiàn)點(diǎn)數(shù)除以3,若學(xué)號(hào)與之同余(同除以3余數(shù)相同),則該小學(xué)生可以上2階樓梯,另外兩位只能上1階樓梯,假定他們都是從平地(0階樓梯)開(kāi)始向上爬,且樓梯數(shù)足夠多.

1)經(jīng)過(guò)2次投擲骰子后,學(xué)號(hào)為1的同學(xué)站在第X階樓梯上,試求X的分布列;

2)經(jīng)過(guò)多次投擲后,學(xué)號(hào)為3的小學(xué)生能站在第n階樓梯的概率記為,試求,,的值,并探究數(shù)列可能滿足的一個(gè)遞推關(guān)系和通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的短軸長(zhǎng)為2,離心率為

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)若直線l與橢圓E相切于點(diǎn)P(點(diǎn)P在第一象限內(nèi)),與圓相交于點(diǎn)AB,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,把滿足條件的所有數(shù)列構(gòu)成的集合記為

1)若數(shù)列的通項(xiàng)為,則是否屬于?

2)若數(shù)列是等差數(shù)列,且,求的取值范圍;

3)若數(shù)列的各項(xiàng)均為正數(shù),且,數(shù)列中是否存在無(wú)窮多項(xiàng)依次成等差數(shù)列,若存在,給出一個(gè)數(shù)列的通項(xiàng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)點(diǎn)在橢圓上,過(guò)點(diǎn)軸的垂線,垂足為,點(diǎn)滿足,已知點(diǎn)的軌跡是過(guò)點(diǎn)的圓.

1)求橢圓的方程;

2)設(shè)直線與橢圓交于,兩點(diǎn)(,軸的同側(cè)),,為橢圓的左、右焦點(diǎn),若,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《周禮夏官馬質(zhì)》中記載馬量三物:一日戎馬,二日田馬,三日駑馬,其意思為馬按照品種可以分為三個(gè)等級(jí),一等馬為戎馬,二等馬為田馬,三等馬為駑馬.假設(shè)在唐朝的某個(gè)王爺要將7匹馬(戎馬3匹,田馬、駑馬各2匹)賞賜給甲、乙、丙3人,每人至少2匹,則甲和乙都得到一等馬的分法總數(shù)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案