(本題滿分14分)
  如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn),作交PB于點(diǎn)F。
  (I)證明平面;
  (II)證明平面EFD;
  (III)求二面角的大小。


方法一:
  (I)證明:連結(jié)AC,AC交BD于O。連結(jié)EO。
  底面ABCD是正方形,點(diǎn)O是AC的中點(diǎn)
  在中,EO是中位線,
  而平面EDB且平面EDB,
  所以,平面EDB。
 (II)證明:底在ABCD且底面ABCD,
   ①   同樣由底面ABCD,得
  底面ABCD是正方形,有平面PDC
  而平面PDC, ②     ………………………………6分
  由①和②推得平面PBC  而平面PBC,
  又,所以平面EFD
(III)解:由(II)知,,故是二面角的平面角
  由(II)知,設(shè)正方形ABCD的邊長為,則
  中,
   在中,
  所以,二面角的大小為
  方法二:如圖所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn)。設(shè)
  (I)證明:連結(jié)AC,AC交BD于G。連結(jié)EG。依題意得
  底面ABCD是正方形,是此正方形的中心, 故點(diǎn)G的坐標(biāo)為
  
  。這表明。
  而平面EDB且平面EDB,平面EDB。
  (II)證明:依題意得。又
   
  由已知,且所以平面EFD。
  (III)解:設(shè)點(diǎn)F的坐標(biāo)為
  
  從而所以
  
  由條件知,
  解得。
  點(diǎn)F的坐標(biāo)為
  
  
  即,故是二面角解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)

  如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn),作交PB于點(diǎn)F。

  (I)證明 平面

  (II)證明平面EFD;

  (III)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:包頭33中09-10高二下學(xué)期期中理科數(shù)學(xué)試題 題型:解答題

(本題滿分14分)

  如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn),作交PB于點(diǎn)F。

  (I)證明 平面;

  (II)證明平面EFD;

  (III)求二面角的大小。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市高三第一次教學(xué)質(zhì)量檢測一級達(dá)標(biāo)校數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)

    已知函數(shù).

 。á瘢┤上的單調(diào)函數(shù),試確定實(shí)數(shù)的取值范圍;

  (Ⅱ)求函數(shù)在定義域上的極值;

(Ⅲ)設(shè),求證:.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市高三上學(xué)期期末考試數(shù)學(xué)理卷(非一級校) 題型:解答題

.(本題滿分14分)

    設(shè)函數(shù)=為自然對數(shù)的底數(shù)),,記

(Ⅰ)的導(dǎo)函數(shù),判斷函數(shù)的單調(diào)性,并加以證明;

(Ⅱ)若函數(shù)=0有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省高三下學(xué)期期中考試?yán)頂?shù) 題型:解答題

(本題滿分14分)

  已知橢圓的中心為坐標(biāo)原點(diǎn),短軸長為2,一條準(zhǔn)線方程為l:

    ⑴ 求橢圓的標(biāo)準(zhǔn)方程;

⑵ 設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)是橢圓的右焦點(diǎn),點(diǎn)M是直線l上的動(dòng)點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值.

 

 

查看答案和解析>>

同步練習(xí)冊答案