(本題滿分14分)
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn),作交PB于點(diǎn)F。
(I)證明平面;
(II)證明平面EFD;
(III)求二面角的大小。
方法一:
(I)證明:連結(jié)AC,AC交BD于O。連結(jié)EO。
底面ABCD是正方形,點(diǎn)O是AC的中點(diǎn)
在中,EO是中位線,。
而平面EDB且平面EDB,
所以,平面EDB。
(II)證明:底在ABCD且底面ABCD,
① 同樣由底面ABCD,得
底面ABCD是正方形,有平面PDC
而平面PDC, ② ………………………………6分
由①和②推得平面PBC 而平面PBC,
又且,所以平面EFD
(III)解:由(II)知,,故是二面角的平面角
由(II)知,設(shè)正方形ABCD的邊長為,則
在中,
在中,
所以,二面角的大小為
方法二:如圖所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn)。設(shè)
(I)證明:連結(jié)AC,AC交BD于G。連結(jié)EG。依題意得
底面ABCD是正方形,是此正方形的中心, 故點(diǎn)G的坐標(biāo)為且
。這表明。
而平面EDB且平面EDB,平面EDB。
(II)證明:依題意得。又故
由已知,且所以平面EFD。
(III)解:設(shè)點(diǎn)F的坐標(biāo)為則
從而所以
由條件知,即
解得。
點(diǎn)F的坐標(biāo)為且
即,故是二面角解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn),作交PB于點(diǎn)F。
(I)證明 平面;
(II)證明平面EFD;
(III)求二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:包頭33中09-10高二下學(xué)期期中理科數(shù)學(xué)試題 題型:解答題
(本題滿分14分)
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn),作交PB于點(diǎn)F。
(I)證明 平面;
(II)證明平面EFD;
(III)求二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市高三第一次教學(xué)質(zhì)量檢測一級達(dá)標(biāo)校數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)
已知函數(shù).
。á瘢┤為上的單調(diào)函數(shù),試確定實(shí)數(shù)的取值范圍;
(Ⅱ)求函數(shù)在定義域上的極值;
(Ⅲ)設(shè),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市高三上學(xué)期期末考試數(shù)學(xué)理卷(非一級校) 題型:解答題
.(本題滿分14分)
設(shè)函數(shù)=(為自然對數(shù)的底數(shù)),,記.
(Ⅰ)為的導(dǎo)函數(shù),判斷函數(shù)的單調(diào)性,并加以證明;
(Ⅱ)若函數(shù)=0有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省高三下學(xué)期期中考試?yán)頂?shù) 題型:解答題
(本題滿分14分)
已知橢圓的中心為坐標(biāo)原點(diǎn),短軸長為2,一條準(zhǔn)線方程為l:.
⑴ 求橢圓的標(biāo)準(zhǔn)方程;
⑵ 設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)是橢圓的右焦點(diǎn),點(diǎn)M是直線l上的動(dòng)點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com