【題目】在直角坐標(biāo)系內(nèi),點(diǎn)A,B的坐標(biāo)分別為,,P是坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),且直線,的斜率之積等于,設(shè)點(diǎn)P的軌跡為C.
(1)求軌跡C的方程;
(2)設(shè)過(guò)點(diǎn)且傾斜角不為0的直線與軌跡C相交于M,N兩點(diǎn),求證:直線,的交點(diǎn)在直線上.
【答案】(1);(2)證明見(jiàn)解析.
【解析】
(1)設(shè)點(diǎn),列式,化簡(jiǎn)(注意斜率存在的條件),求軌跡方程.
(2)直線傾斜角不為0,設(shè)直線的方程(不用取討論斜率是否存在),聯(lián)立直線和橢圓的方程,消元,韋達(dá)定理,用點(diǎn)的坐標(biāo)表示直線和方程,求交點(diǎn),進(jìn)而求出,即證明交點(diǎn)在直線.
(1)設(shè)點(diǎn),,
則,得,即.
故軌跡C的方程為:.
(2)根據(jù)題意,可設(shè)直線的方程為:,
由,消去x并整理得.
其中,.
設(shè),,則,.
因直線的傾斜角不為0,故,不等于(,不為0),
從而可設(shè)直線的方程為:——①,
直線的方程為:——②,
所以,直線,的交點(diǎn)的坐標(biāo)滿足:
.
而
,
因此,,即點(diǎn)Q在直線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程是(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)過(guò)原點(diǎn)的直線與直線交于點(diǎn),與曲線交于、兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線: 的左、右焦點(diǎn)分別為, 為坐標(biāo)原點(diǎn), 是雙曲線上在第一象限內(nèi)的點(diǎn),直線分別交雙曲線左、右支于另一點(diǎn), ,且,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)絡(luò)購(gòu)物已經(jīng)成為人們的一種生活方式.某購(gòu)物平臺(tái)為了給顧客提供更好的購(gòu)物體驗(yàn),為入駐商家設(shè)置了積分制度,每筆購(gòu)物完成后,買家可以根據(jù)物流情況、商品質(zhì)量等因素對(duì)商家做出評(píng)價(jià),評(píng)價(jià)分為好評(píng)、中評(píng)和差評(píng)平臺(tái)規(guī)定商家有50天的試營(yíng)業(yè)時(shí)間,期間只評(píng)價(jià)不積分,正式營(yíng)業(yè)后,每個(gè)好評(píng)給商家計(jì)1分,中評(píng)計(jì)0分,差評(píng)計(jì)分,某商家在試營(yíng)業(yè)期間隨機(jī)抽取100單交易調(diào)查了其商品的物流情況以及買家的評(píng)價(jià)情況,分別制成了圖1和圖2.
(1)通常收件時(shí)間不超過(guò)四天認(rèn)為是物流迅速,否則認(rèn)為是物流遲緩;
請(qǐng)根據(jù)題目所給信息完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“獲得好評(píng)”與物流速度有關(guān)?
好評(píng) | 中評(píng)或差評(píng) | 合計(jì) | |
物流迅速 | |||
物流遲緩 | 30 | ||
合計(jì) |
(2)從正式營(yíng)業(yè)開(kāi)始,記商家在每筆交易中得到的評(píng)價(jià)得分為.該商家將試營(yíng)業(yè)50天期間的成交情況制成了頻數(shù)分布表(表1),以試營(yíng)業(yè)期間成交單數(shù)的頻率代替正式營(yíng)業(yè)時(shí)成交單數(shù)發(fā)生的概率.
表1
成交單數(shù) | 36 | 30 | 27 |
天數(shù) | 10 | 20 | 20 |
(Ⅰ)求的分布列和數(shù)學(xué)期望;
(Ⅱ)平臺(tái)規(guī)定,當(dāng)積分超過(guò)10000分時(shí),商家會(huì)獲得“誠(chéng)信商家”稱號(hào),請(qǐng)估計(jì)該商家從正式營(yíng)業(yè)開(kāi)始,1年內(nèi)(365天)能否獲得“誠(chéng)信商家”稱號(hào)
附:
參考數(shù)據(jù):
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長(zhǎng)為2的正三角形,頂點(diǎn)在上的射影為點(diǎn),且, , .
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在四棱錐中,底面是邊長(zhǎng)為的正方形,是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點(diǎn).
(Ⅰ)求證:PO平面;
(Ⅱ)求平面EFG與平面所成銳二面角的大。
(Ⅲ)線段上是否存在點(diǎn),使得直線與平面所成角為,若存在,求線段的長(zhǎng)度;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車間用一臺(tái)包裝機(jī)包裝葡萄糖,每袋葡萄糖的重量是一個(gè)隨機(jī)變量,它服從正態(tài)分布.當(dāng)機(jī)器工作正常時(shí),每袋葡萄糖平均重量為0.5kg,標(biāo)準(zhǔn)差為0.015kg.
(1)已知包裝每袋葡萄糖的成本為1元,若發(fā)現(xiàn)包裝好的葡萄糖重量異常,則需要將該袋葡萄糖進(jìn)行重新包裝,假設(shè)重新包裝后的葡萄糖重量正常.若某袋葡萄糖的重量滿足,則認(rèn)為該袋葡萄糖重量正常. 問(wèn):在機(jī)器工作正常的情況下,至少包裝多少袋葡萄糖才能使“至少有一袋包裝好的葡萄糖重量正常”的概率大于0.98?并求出相應(yīng)成本的最小期望值.
(2)某日開(kāi)工后, 為檢査該包裝機(jī)工作是否正常, 隨機(jī)地抽取它所包裝的葡萄糖9袋,若抽取的9袋葡萄糖稱得凈重(kg)為:0.496, 0.508, 0.524, 0.519, 0.495, 0.510, 0.522, 0.513, 0.512.用樣本平均數(shù)作為的估計(jì)值,以作為檢驗(yàn)統(tǒng)計(jì)量,其中為樣本總數(shù),服從正態(tài)分布,且.
①若機(jī)器工作正常時(shí), 每袋葡萄糖的重量服從的正態(tài)分布曲線如下圖所示,且經(jīng)計(jì)算得上述樣本數(shù)據(jù)的標(biāo)準(zhǔn)差0.022.請(qǐng)?jiān)谙聢D(機(jī)器正常工作時(shí)的正態(tài)分布曲線)中,繪制出以該樣本作為估計(jì)得到的每袋葡萄糖所服從的正態(tài)分布曲線的草圖.
②若,就推斷該包裝機(jī)工作異常,這種推斷犯錯(cuò)誤的概率不超過(guò),試以95%的可靠性估計(jì)該包裝機(jī)工作是否正常.
附: 若隨機(jī)變量服從正態(tài)分布:,
參考數(shù)據(jù):;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列中,已知.在①,②,③這三個(gè)條件中任選一個(gè)補(bǔ)充在第(2)問(wèn)中,并對(duì)其求解.
(1)求數(shù)列的通項(xiàng)公式;
(2)若___________,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com