【題目】已知函數(shù)

(1)試確定上的單調(diào)性;

(2)若,函數(shù)在(0,2)上有極值,求實數(shù)的取值范圍。

【答案】(1)的增區(qū)間為,減區(qū)間為(2)

【解析】(1)對已知函數(shù)f(x)求導(dǎo)得,f′(x).

1lnx0,得xe.

當(dāng)x∈(0,e)時,f′(x)>0;當(dāng)x∈(e,+∞)時,f′(x)<0

函數(shù)f(x)(0,e]上單調(diào)遞增,在[e,+∞)上單調(diào)遞減.

(2)h(x)xf(x)xax2,

可得h(x)lnxxax2,

h′(x)12ax.

h(x)xf(x)xax2(0,2)上有極值的充要條件是φ(x)=-2ax2x1(0,2)上有零點,

φ(0)·φ(2)<0,解得a>.

綜上所述,a的取值范圍是(0,+∞)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,已知橢圓),,,是橢圓上的四個動點,且,線段交于橢圓內(nèi)一點.當(dāng)點的坐標(biāo)為,且,分別為橢圓的上頂點和右頂點重合時,四邊形的面積為4.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)證明:當(dāng)點,,,在橢圓上運動時,)是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);

(2)設(shè),若不等式對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的上下兩個焦點分別為, ,過點軸垂直的直線交橢圓兩點, 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知為坐標(biāo)原點,直線 軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)家歐拉在1765年提出:三角形的外心、重心位于同一直線上,這條直線被后人稱之為三角形的歐拉線,若的頂點,且的歐拉線的方程為.

1)求外心(外接圓圓心)的坐標(biāo);

2)求頂點的坐標(biāo).

(注:如果三個頂點坐標(biāo)分別為,,則重心的坐標(biāo)是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點M20),圓Cx2+y2+4x=0.

1)求直線3x+4y+1=0與圓Cx2+y2+4x=0相交所得的弦長|MN|;

2)過點M的直線與圓C交于A,B兩個不同的點,求弦AB的中點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從柳州鐵一中高二男生中隨機(jī)選取100名學(xué)生,將他們的體重(單位:)數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.

1)估計該校的100名同學(xué)體重的平均值和方差(同一組數(shù)據(jù)用該組區(qū)間的中點值代表);

2)若要從體重在內(nèi)的兩組男生中,用分層抽樣的方法選取5人,再從這5人中隨機(jī)抽取2人,求被抽取的兩位同學(xué)來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】孝感市某中學(xué)為了解中學(xué)生的課外閱讀時間,決定在該中學(xué)的1200名男生和800名女生中用分層抽樣的方法抽取20名學(xué)生,對他們的課外閱讀時間進(jìn)行問卷調(diào)查.現(xiàn)在按課外閱讀時間的情況將學(xué)生分成三類:類(不參加課外閱讀),類(參加課外閱讀,但平均每周參加課外閱讀的時間不超過3小時),類(參加課外閱讀,且平均每周參加課外閱讀的時間超過3小時).調(diào)查結(jié)果如表:

男生

5

3

女生

3

3

1)求出表中的值;

2)根據(jù)表中的統(tǒng)計數(shù)據(jù),完成下面的列聯(lián)表,井判斷是否有90%的把握認(rèn)為“參加閱讀與否”與性別有關(guān);

男生

女生

總計

不參加課外閱讀

參課外閱讀

總計

3)從抽出的女生中再隨機(jī)抽取3人進(jìn)一步了解情況,記X為抽取的這3名女生中A類女生人數(shù),求X的數(shù)學(xué)期望.

附:.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,,.為線段上的點.

(I)證明:

(Ⅱ)若的中點,求與平面所成的角的正弦值;

(Ⅲ)若滿足,求二面角正弦值.

查看答案和解析>>

同步練習(xí)冊答案