【題目】基于移動互聯(lián)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時間就風靡全國,帶給人們新的出行體驗,某共享單車運營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個月內(nèi)的市場占有率進行了統(tǒng)計,設月份代碼為,市場占有率為,得結(jié)果如下表:

年月

2018.10

2018.11

2018.12

2019.1

2019.2

2019.3

1

2

3

4

5

6

11

13

16

15

20

21

(1)觀察數(shù)據(jù)看出,可用線性回歸模型擬合的關系,請用相關系數(shù)加以說明(精確到0.001);

(2)求關于的線性回歸方程,并預測該公司2019年4月份的市場占有率;

(3)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴大市場,現(xiàn)有采購成本分別為1000元/輛和800元/輛的甲、乙兩款車型報廢年限各不相同,考慮到公司的經(jīng)濟效益,該公司決定先對兩款單車各100輛進行科學模擬測試,得到兩款單車使用壽命頻率表如下:

經(jīng)測算,平均每輛單車可以為公司帶來收入500元,不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整數(shù)年,且用頻率估計每輛單車使用壽命的概率,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),如果你是該公司的負責人,你會選擇采購哪款車型?

參考數(shù)據(jù):,,

回歸方程中斜率和截距的最小二乘法估計公式分別為,.

【答案】(1)見解析(2),4月份的市場占有率預報值為23%.(3)見解析

【解析】

1)通過線性回歸相關系數(shù)的公式,計算得到結(jié)果,看是否接近1

2)利用最小二乘法將回歸方程的斜率和截距計算出來,帶入2019年4月份代碼,得到答案;

(3)用頻率估計概率,得到每款單車的利潤的分布列,算出數(shù)學期望,做出判斷.

解:(1)由參考數(shù)據(jù)可得,接近1,

所以與之間具有較強的線性相關關系,可用線性回歸模型進行擬合.

(2)因為,,

,

所以關于的線性回歸方程為

2019年4月份代碼,代入線性回歸方程得

于是2019年4月份的市場占有率預報值為23%.

(3)用頻率估計概率,甲款單車的利潤的分布列為

-500

0

500

1000

0.1

0.3

0.4

0.2

(元).

乙款單車的利潤的分布列為

-300

200

700

1200

0.15

0.4

0.35

0.1

(元).

以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),故應選擇乙款車型.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=0.

(1)求A;

(2)已知a=2,B=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列三種說法:

①命題p:x0∈R,tan x0=1,命題q:x∈R,x2-x+1>0,則命題“p∧()”是假命題.

②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是=-3.

③命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”.

其中所有正確說法的序號為________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】港珠澳大橋是中國建設史上里程最長,投資最多,難度最大的跨海橋梁項目,大橋建設需要許多橋梁構(gòu)件。從某企業(yè)生產(chǎn)的橋梁構(gòu)件中抽取件,測量這些橋梁構(gòu)件的質(zhì)量指標值,由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標值落在區(qū)間,內(nèi)的頻率之比為.

(1)求這些橋梁構(gòu)件質(zhì)量指標值落在區(qū)間內(nèi)的頻率;

(2)用分層抽樣的方法在區(qū)間內(nèi)抽取一個容量為的樣本,將該樣本看成一個總體,從中任意抽取件橋梁構(gòu)件,求這件橋梁構(gòu)件都在區(qū)間內(nèi)的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:

根據(jù)該折線圖可知,下列說法錯誤的是( )

A. 該超市2018年的12個月中的7月份的收益最高

B. 該超市2018年的12個月中的4月份的收益最低

C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益

D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級,0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~300為重度污染;大于300為嚴重污染.某環(huán)保人士從當?shù)啬衬甑腁QI記錄數(shù)據(jù)中,隨機抽取了15天的AQI數(shù)據(jù),用如圖所示的莖葉圖記錄.根據(jù)該統(tǒng)計數(shù)據(jù),估計此地該年空氣質(zhì)量為優(yōu)或良的天數(shù)約為__________.(該年為366天)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了得到函數(shù)的圖象,需對函數(shù)的圖象所作的變換可以為( )

A. 先將圖象上所有點的橫坐標壓縮為原來的,縱坐標不變,再向右平移個單位

B. 先向左平移個單位,再將圖象上所有點的橫坐標壓縮為原來的,縱坐標不變

C. 先向左平移個單位,再將圖象上所有點的橫坐標壓縮為原來的,縱坐標不變

D. 先向右平移個單位,再將圖象上所有點的橫坐標伸長為原來的3倍,縱坐標不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,為坐標原點,為橢圓的左焦點,離心率為,直線與橢圓相交于,兩點.

(1)求橢圓的方程;

(2)若是弦的中點,是橢圓上一點,求的面積最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為,作平面與底面不平行與棱,,分別交于E,FG,H,記EA,FB,GC,HD分別為,,,,若,,則多面體EFGHABCD的體積為  

A. B. C. D.

查看答案和解析>>

同步練習冊答案