已知中心在原點的橢圓C的右焦點為F(1,0),離心率等于,則C的方程是(  ).
A.=1B.=1
C.=1D.=1
D
由題意c=1,e=,則a=2,b2=a2-c2=3.故所求橢圓方程為:=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,經(jīng)過點(0,)且斜率為k的直線l與橢圓+y2=1有兩個不同的交點P和Q.
(1)求k的取值范圍;
(2)設(shè)橢圓與x軸正半軸、y軸正半軸的交點分別為A,B,是否存在常數(shù)k,使得向量共線?如果存在,求k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)橢圓的離心率,頂點的距離為,為坐標(biāo)原點.

(1)求橢圓的方程;
(2)過點作兩條互相垂直的射線,與橢圓分別交于兩點.
(。┰嚺袛帱c到直線的距離是否為定值.若是請求出這個定值,若不是請說明理由;
(ⅱ)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1,F2分別是橢圓+=1(a>b>0)的左、右焦點,以原點O為圓心,OF1為半徑的圓與橢圓在y軸左側(cè)交于A,B兩點,若△F2AB是等邊三角形,則橢圓的離心率等于    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓=1(0<b<2)與y軸交于AB兩點,點F為該橢圓的一個焦點,則△ABF面積的最大值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C=1(ab>0)上任一點P到兩個焦點的距離的和為2,P與橢圓長軸兩頂點連線的斜率之積為-.設(shè)直線l過橢圓C的右焦點F,交橢圓C于兩點A(x1,y1),B(x2,y2).
(1)若 (O為坐標(biāo)原點),求|y1y2|的值;
(2)當(dāng)直線l與兩坐標(biāo)軸都不垂直時,在x軸上是否總存在點Q,使得直線QA,QB的傾斜角互為補角?若存在,求出點Q坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓=1上任一點P,由點Px軸作垂線PQ,垂足為Q,設(shè)點MPQ上,且=2,點M的軌跡為C.
(1)求曲線C的方程;
(2)過點D(0,-2)作直線l與曲線C交于A、B兩點,設(shè)N是過點且平行于x軸的直線上一動點,且滿足 (O為原點),且四邊形OANB為矩形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點是橢圓上的一動點,為橢圓的兩個焦點,是坐標(biāo)原點,若的角平分線上的一點,且,則的取值范圍為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是橢圓上的一點, 是焦點, 且, 則△的面積是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案