【題目】某種賭博每局的規(guī)則是:賭客先在標(biāo)記有1,2,3,4,5的卡片中隨機摸取一張,將卡片上的數(shù)字作為其賭金;隨后放回該卡片,再隨機摸取兩張,將這兩張卡片上數(shù)字之差的絕對值的1.4倍作為其獎金.若隨機變量ξ1和ξ2分別表示賭客在一局賭博中的賭金和獎金,則D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.
【答案】2 0.2
【解析】
分別求出隨機變量ξ1和ξ2的分布列,根據(jù)期望和方差公式計算得解.
設(shè)a,b∈{1,2,3,4,5},則p(ξ1=a),其ξ1分布列為:
ξ1 | 1 | 2 | 3 | 4 | 5 |
P |
|
|
E(ξ1)(1+2+3+4+5)=3.
D(ξ1)[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.
ξ2=1.4|a﹣b|的可能取值分別為:1.4,2.8,4.2,5.6,
P(ξ2=1.4),P(ξ2=2.8),P(ξ2=4.2),P(ξ2=5.6),可得分布列.
ξ2 | 1.4 | 2.8 | 4.2 | 5.6 |
P |
|
E(ξ2)=1.42.84.25.62.8.
∴E(ξ1)﹣E(ξ2)=0.2.
故答案為:2,0.2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(Ⅰ)若的圖像在處的切線經(jīng)過點(3,4),求的值;
(Ⅱ)若,求證: ;
(Ⅲ)當(dāng)函數(shù)存在三個不同的零點時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓M與直線相切,且與圓N:外切
(1)求動圓圓心M的軌跡C的方程;
(2)點O為坐標(biāo)原點,過曲線C外且不在y軸上的點P作曲線C的兩條切線,切點分別記為A,B,當(dāng)直線與的斜率之積為時,求證:直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形, 面, 為的中點。
(1)證明: 平面;
(2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查公司員工的飲食習(xí)慣與月收入之間的關(guān)系,隨機抽取了30名員工,并制作了這30人的月平均收入的頻率分布直方圖和飲食指數(shù)表(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主).其中月收入4000元以上員工中有11人飲食指數(shù)高于70.
20 | 21 | 21 | 25 | 32 | 33 |
36 | 37 | 42 | 43 | 44 | 45 |
45 | 58 | 58 | 59 | 61 | 66 |
74 | 75 | 76 | 77 | 77 | 78 |
78 | 82 | 83 | 85 | 86 | 90 |
(1)是否有的把握認為飲食習(xí)慣與月收入有關(guān)系?若有,請說明理由,若沒有,說明理由并分析原因;
(2)從飲食指數(shù)在內(nèi)的員工中任選2人,求他們的飲食指數(shù)均在內(nèi)的概率;
(3)經(jīng)調(diào)查某地若干戶家庭的年收入(萬元)和年飲支出(萬元)具有線性相關(guān)關(guān)系,并得到關(guān)于的回歸直線方程:.若一個員工的月收入恰好為這30人的月平均收入,估計該人的年飲食支出費用.
附:,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:y2=2px(p>0),焦點F到準(zhǔn)線的距離為3,拋物線E上的兩個動點A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4.線段AB的垂直平分線與x軸交于點 C.
(1)求拋物線E的方程;
(2)求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.
(1)求BC的長度;
(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險,現(xiàn)從名參保人員中隨機抽取名作為樣本進行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應(yīng)交納的保費如下表所示. 據(jù)統(tǒng)計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.
年齡 (單位:歲) | |||||
保費 (單位:元) |
(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數(shù)時的最小值;
(2之間的老人每人中有人患該項疾病(以此頻率作為概率).該病的治療費為元,如果參保,保險公司補貼治療費元.某老人年齡歲,若購買該項保險(取中的).針對此疾病所支付的費用為元;若沒有購買該項保險,針對此疾病所支付的費用為元.試比較和的期望值大小,并判斷該老人購買此項保險是否劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店經(jīng)銷某商品,為了解該商品的月銷量y(單位:千件)與售價x(單位:元/件)之間的關(guān)系,收集5組數(shù)據(jù)進行了初步處理,得到如下數(shù)表:
x | 5 | 6 | 7 | 8 | 9 |
y | 8 | 6 | 4.5 | 3.5 | 3 |
(1)統(tǒng)計學(xué)中用相關(guān)系數(shù)r來衡量兩個變量之間線性相關(guān)關(guān)系的強弱,若,則認為相關(guān)性很強;若,則認為相關(guān)性一般;若,則認為相關(guān)性較弱.請根據(jù)上表數(shù)據(jù)計算y與x之間相關(guān)系數(shù)r,并說明y與x之間的線性相關(guān)關(guān)系的強弱(精確到0.01);
(2)求y關(guān)于x的線性回歸方程;
(3)根據(jù)(2)中的線性回歸方程,應(yīng)將售價x定為多少,可獲取最大的月銷售金額?(月銷售金額=月銷售量×當(dāng)月售價)
附注:
參考數(shù)據(jù):,
參考公式:相關(guān)系數(shù),
線性回歸方程,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com