【題目】設(shè)數(shù)列{an}的前n項和為Sn , a1=10,an+1=9Sn+10.
(1)求證:{lgan}是等差數(shù)列;
(2)設(shè)Tn是數(shù)列{ }的前n項和,求Tn
(3)求使Tn (m2﹣5m)對所有的n∈N*恒成立的整數(shù)m的取值集合.

【答案】
(1)解:∵a1=10,an+1=9Sn+10.

∴當n=1時,a2=9a1+10=100,

當n≥1時,an+1=9Sn+10 ①,

an+2=9Sn+1+10 ②,

兩式相減得an+2﹣an+1=9an+1

即an+2=10an+1,

,

即{an}是首項a1=10,公比q=10的等比數(shù)列,

則數(shù)列{an}的通項公式 ;

則lgan=lg10n=n,

則lgan﹣lgan1=n﹣(n﹣1)=1,為常數(shù),

即{lgan}是等差數(shù)列;


(2)解:∵lgan=n,則 = ),

則Tn=3(1﹣ +…+ )=3(1﹣ )=3﹣ ,


(3)解:∵Tn=3﹣ ≥T1=

∴要使Tn (m2﹣5m)對所有的n∈N*恒成立,

(m2﹣5m)對所有的n∈N*恒成立,

解得﹣1<m<6,

故整數(shù)m的取值集合{0,1,2,3,4,5}.


【解析】(1)根據(jù)等差數(shù)列的定義即可證明{lgan}是等差數(shù)列;(2)求出{ }的通項公式,利用裂項法即可求Tn;(3)直接解不等式即可得到結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解等差關(guān)系的確定的相關(guān)知識,掌握如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),即=d ,(n≥2,n∈N)那么這個數(shù)列就叫做等差數(shù)列,以及對數(shù)列的前n項和的理解,了解數(shù)列{an}的前n項和sn與通項an的關(guān)系

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=3x , f(a+2)=27,函數(shù)g(x)=λ2ax﹣4x的定義域為[0,2].
(1)求a的值;
(2)若λ=2,試判斷函數(shù)g(x)在[0,2]上的單調(diào)性,并加以證明;
(3)若函數(shù)g(x)的最大值是 ,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐D﹣ABC中,已知△BCD是正三角形,平面ABC⊥平面BCD,AB=BC=a,AC= a,E為BC的中點,F(xiàn)在棱AC上,且AF=3FC.

(1)求三棱錐D﹣ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點,N在棱AC上,且CN= CA,求證:MN∥平面DEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(13分)如圖,橢圓經(jīng)過點,離心率,直線l的方程為

1)求橢圓C的方程;

2是經(jīng)過右焦點的任一弦(不經(jīng)過點),設(shè)直線與直線相交于點,記、、的斜率分別為、、.問:是否存在常數(shù),使得? 若存在,求的值; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線,直線經(jīng)過點相交于、兩點.

(1)若,求證: 必為的焦點;

(2)設(shè),若點上,且的最大值為,求的值;

(3)設(shè)為坐標原點,若,直線的一個法向量為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l經(jīng)過點P(﹣2,5),且斜率為﹣
(1)求直線l的方程;
(2)若直線m與l平行,且點P到直線m的距離為3,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某經(jīng)銷商從外地水產(chǎn)養(yǎng)殖廠購進一批小龍蝦,并隨機抽取40只進行統(tǒng)計,按重量分類統(tǒng)計結(jié)果如下圖:

(1)記事件為:“從這批小龍蝦中任取一只,重量不超過35的小龍蝦”,求的估計值;

(2)若購進這批小龍蝦100千克,試估計這批小龍蝦的數(shù)量;

(3)為適應市場需求,了解這批小龍蝦的口感,該經(jīng)銷商將這40只小龍蝦分成三個等級,如下表:

等級

一等品

二等品

三等品

重量(

按分層抽樣抽取10只,再隨機抽取3只品嘗,記為抽到二等品的數(shù)量,求抽到二級品的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=sin(2x﹣ )圖象向左平移 個單位,所得函數(shù)圖象的一條對稱軸的方程是(
A.x=
B.x=
C.x=
D.x=﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方

圖:

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為體育迷”.

)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料,在犯錯誤的概率不超過的前提下,你是否有理由認為體育迷與性別有關(guān)?


非體育迷

體育迷

合計







10

55

合計




)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的體育迷人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求的分布列,期望和方差.

附:







查看答案和解析>>

同步練習冊答案