3.已知$\overrightarrow a=(3,2),\overrightarrow b=(0,-1)$,則$2\overrightarrow a-3\overrightarrow b$的坐標(biāo)是(  )
A.(6,-5)B.(6,7)C.(6,1)D.(6,-1)

分析 利用向量坐標(biāo)運算性質(zhì)即可得出.

解答 解:$2\overrightarrow a-3\overrightarrow b$=(6,4)-(0,-3)=(6,7),
故選:B.

點評 本題考查了向量坐標(biāo)運算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=ax-lnx,其中x∈(0,e](e是自然對數(shù)的底數(shù)),
(1)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間、極值;
(2)是否存在a∈R,使f(x)的最小值是3,若存在求出a的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖所示的程序框圖的算符源于我國古代的“中國剩余定理”,用N≡n(modm)表示正整數(shù)N除以正整數(shù)m后的余數(shù)為n,例如:7≡1(mod3),執(zhí)行該程序框圖,則輸出的n的值為( 。
A.19B.20C.21D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在一次公益活動中,某學(xué)校需要安排五名學(xué)生去甲乙丙丁四個地點進(jìn)行活動,每個地點至少安排一個學(xué)生且每個學(xué)生只能安排一個地點,甲地受地方限制只能安排一人,A同學(xué)因離乙地較遠(yuǎn)而不安排去乙地,則不同的分配方案的種數(shù)為( 。
A.96B.120C.132D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|x>0},集合B={x|2≤x≤3},則A∩B=(  )
A.[3,+∞)B.[2,3]C.(0,2]∪[3,+∞)D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,則輸出的S值為( 。
A.1009B.-1009C.-1007D.1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}\frac{{{2^x}+2}}{2},x≤1\\|ln({x-1})|,x>1\end{array}$,則函數(shù)F(x)=f[f(x)]-af(x)-$\frac{3}{2}$的零點個數(shù)是4個時,下列選項是a的取值范圍的子集的是( 。
A.$({\frac{1}{2},+∞})∪\left\{{\frac{ln2}{2}}\right\}$B.$[{\frac{ln2}{2},+∞})$C.$({0,\frac{1}{2}})∪\left\{{\frac{ln2}{2}}\right\}$D.$[{\frac{ln2}{2},\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若函數(shù)h(x)=ax3+bx2+cx+d(a≠0)圖象的對稱中心為M(x0,h(x0)),記函數(shù)h(x)的導(dǎo)函數(shù)為g(x),則有g(shù)′(x0)=0,設(shè)函數(shù)f(x)=x3-3x2+2,則f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+…+f($\frac{4032}{2017}$)+f($\frac{4033}{2017}$)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若冪函數(shù)f(x)的圖象經(jīng)過點A(4,2),則它在A點處的切線方程為x-4y+4=0.

查看答案和解析>>

同步練習(xí)冊答案