已知函數(shù)().
(1)若的定義域和值域均是,求實(shí)數(shù)的值;
(2)若對(duì)任意的,,總有,求實(shí)數(shù)的取值范圍.
(1)(2)
解析試題分析:(1)∵(),
∴在上是減函數(shù),
又定義域和值域均為,∴ ,
即 , 解得 . ……4分
(2)若,又,且,
∴,. ……6分
∵對(duì)任意的,,總有,
∴, ……8分
即 ,
解得 , 又, ∴.
若, ……10分
顯然成立,
綜上。 ……12分
考點(diǎn):本小題主要考查二次函數(shù)的單調(diào)性、最值的求解和應(yīng)用,考查含絕對(duì)值的不等式的求解和應(yīng)用,考查學(xué)生轉(zhuǎn)化問(wèn)題的能力和分類討論思想的應(yīng)用.
點(diǎn)評(píng):求解含絕對(duì)值的不等式,關(guān)鍵是想方設(shè)法去掉絕對(duì)值號(hào),而去絕對(duì)值號(hào)的方法一般是分類討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知函數(shù)。
(Ⅰ)若函數(shù)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè),若函數(shù)存在兩個(gè)零點(diǎn),且滿足,問(wèn):函數(shù)在處的切線能否平行于軸?若能,求出該切線方程;若不能,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知命題P:函數(shù)是R上的減函數(shù),命題Q:在 時(shí),不等式恒成立,若命題“”是真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在處取得極小值2.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)函數(shù),若對(duì)于任意,總存在,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)函數(shù)在區(qū)間上恒為正數(shù),求的最小值;
(Ⅲ)若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
一片森林原來(lái)面積為,計(jì)劃每年砍伐一些樹(shù),且每年砍伐面積的百分比相等,當(dāng)砍伐到面積的一半時(shí),所用時(shí)間是10年,為保護(hù)生態(tài)環(huán)境,森林面積至少要保留原面積的,已知到今年為止,森林剩余面積為原來(lái)的.
(Ⅰ)求每年砍伐面積的百分比;
(Ⅱ)到今年為止,該森林已砍伐了多少年?
(Ⅲ)今后最多還能砍伐多少年?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)于函數(shù),若存在x0∈R,使方程成立,則稱x0為的不動(dòng)點(diǎn),已知函數(shù)(a≠0).
(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com