已知函數(shù)=.
(1)討論的單調(diào)性;
(2)設(shè),當(dāng)時(shí),,求的最大值;
(3)已知,估計(jì)ln2的近似值(精確到0.001)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知函數(shù),過點(diǎn)P的直線與曲線相切,求的方程;
(2)設(shè),當(dāng)時(shí),在1,4上的最小值為,求在該區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,求在上的最小值;
(2)若存在,使,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)若在區(qū)間上單調(diào)遞增,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.
(1)若曲線y=f(x)與曲線y=g(x) 在它們的交點(diǎn)P(2,c)處有相同的切線(P為切點(diǎn)),求實(shí)數(shù)a,b的值;
(2)令h (x)=f(x)+g(x),若函數(shù)h(x)的單調(diào)減區(qū)間為.
①求函數(shù)h(x)在區(qū)間(-∞,-1]上的最大值M(a);
②若|h(x)|≤3在x∈[-2,0]上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax-ln x,g(x)=,它們的定義域都是(0,e],其中e是自然對(duì)數(shù)的底e≈2.7,a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
(2)當(dāng)a=1時(shí),求證:f(m)>g(n)+對(duì)一切m,n∈(0,e]恒成立;
(3)是否存在實(shí)數(shù)a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求在區(qū)間上的最大值;
(2)若過點(diǎn)存在3條直線與曲線相切,求t的取值范圍;
(3)問過點(diǎn)分別存在幾條直線與曲線相切?(只需寫出結(jié)論)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com